SensPick: Sense Picking for Word Sense Disambiguation
- URL: http://arxiv.org/abs/2102.05260v1
- Date: Wed, 10 Feb 2021 04:52:42 GMT
- Title: SensPick: Sense Picking for Word Sense Disambiguation
- Authors: Sm Zobaed, Md Enamul Haque, Md Fazle Rabby, and Mohsen Amini Salehi
- Abstract summary: We use both context and related gloss information of a target word to model the semantic relationship between the word and the set of glosses.
We propose SensPick, a type of stacked bidirectional Long Short Term Memory (LSTM) network to perform the WSD task.
- Score: 1.1429576742016154
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Word sense disambiguation (WSD) methods identify the most suitable meaning of
a word with respect to the usage of that word in a specific context. Neural
network-based WSD approaches rely on a sense-annotated corpus since they do not
utilize lexical resources. In this study, we utilize both context and related
gloss information of a target word to model the semantic relationship between
the word and the set of glosses. We propose SensPick, a type of stacked
bidirectional Long Short Term Memory (LSTM) network to perform the WSD task.
The experimental evaluation demonstrates that SensPick outperforms traditional
and state-of-the-art models on most of the benchmark datasets with a relative
improvement of 3.5% in F-1 score. While the improvement is not significant,
incorporating semantic relationships brings SensPick in the leading position
compared to others.
Related papers
- Semantic Specialization for Knowledge-based Word Sense Disambiguation [12.573927420408365]
A promising approach for knowledge-based Word Sense Disambiguation (WSD) is to select the sense whose contextualized embeddings are closest to those computed for a target word in a given sentence.
We propose a semantic specialization for WSD where contextualized embeddings are adapted to the WSD task using solely lexical knowledge.
arXiv Detail & Related papers (2023-04-22T07:40:23Z) - Always Keep your Target in Mind: Studying Semantics and Improving
Performance of Neural Lexical Substitution [124.99894592871385]
We present a large-scale comparative study of lexical substitution methods employing both old and most recent language models.
We show that already competitive results achieved by SOTA LMs/MLMs can be further substantially improved if information about the target word is injected properly.
arXiv Detail & Related papers (2022-06-07T16:16:19Z) - Connect-the-Dots: Bridging Semantics between Words and Definitions via
Aligning Word Sense Inventories [47.03271152494389]
Word Sense Disambiguation aims to automatically identify the exact meaning of one word according to its context.
Existing supervised models struggle to make correct predictions on rare word senses due to limited training data.
We propose a gloss alignment algorithm that can align definition sentences with the same meaning from different sense inventories to collect rich lexical knowledge.
arXiv Detail & Related papers (2021-10-27T00:04:33Z) - Large Scale Substitution-based Word Sense Induction [48.49573297876054]
We present a word-sense induction method based on pre-trained masked language models (MLMs), which can cheaply scale to large vocabularies and large corpora.
The result is a corpus which is sense-tagged according to a corpus-derived sense inventory and where each sense is associated with indicative words.
Evaluation on English Wikipedia that was sense-tagged using our method shows that both the induced senses, and the per-instance sense assignment, are of high quality even compared to WSD methods, such as Babelfy.
arXiv Detail & Related papers (2021-10-14T19:40:37Z) - Contextualized Semantic Distance between Highly Overlapped Texts [85.1541170468617]
Overlapping frequently occurs in paired texts in natural language processing tasks like text editing and semantic similarity evaluation.
This paper aims to address the issue with a mask-and-predict strategy.
We take the words in the longest common sequence as neighboring words and use masked language modeling (MLM) to predict the distributions on their positions.
Experiments on Semantic Textual Similarity show NDD to be more sensitive to various semantic differences, especially on highly overlapped paired texts.
arXiv Detail & Related papers (2021-10-04T03:59:15Z) - Meta-Learning with Variational Semantic Memory for Word Sense
Disambiguation [56.830395467247016]
We propose a model of semantic memory for WSD in a meta-learning setting.
Our model is based on hierarchical variational inference and incorporates an adaptive memory update rule via a hypernetwork.
We show our model advances the state of the art in few-shot WSD, supports effective learning in extremely data scarce scenarios.
arXiv Detail & Related papers (2021-06-05T20:40:01Z) - EDS-MEMBED: Multi-sense embeddings based on enhanced distributional
semantic structures via a graph walk over word senses [0.0]
We leverage the rich semantic structures in WordNet to enhance the quality of multi-sense embeddings.
We derive new distributional semantic similarity measures for M-SE from prior ones.
We report evaluation results on 11 benchmark datasets involving WSD and Word Similarity tasks.
arXiv Detail & Related papers (2021-02-27T14:36:55Z) - FEWS: Large-Scale, Low-Shot Word Sense Disambiguation with the
Dictionary [43.32179344258548]
Current models for Word Sense Disambiguation (WSD) struggle to disambiguate rare senses.
This paper introduces FEWS, a new low-shot WSD dataset automatically extracted from example sentences in Wiktionary.
arXiv Detail & Related papers (2021-02-16T07:13:34Z) - Moving Down the Long Tail of Word Sense Disambiguation with
Gloss-Informed Biencoders [79.38278330678965]
A major obstacle in Word Sense Disambiguation (WSD) is that word senses are not uniformly distributed.
We propose a bi-encoder model that independently embeds (1) the target word with its surrounding context and (2) the dictionary definition, or gloss, of each sense.
arXiv Detail & Related papers (2020-05-06T04:21:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.