On Disentanglement in Gaussian Process Variational Autoencoders
- URL: http://arxiv.org/abs/2102.05507v1
- Date: Wed, 10 Feb 2021 15:49:27 GMT
- Title: On Disentanglement in Gaussian Process Variational Autoencoders
- Authors: Simon Bing, Vincent Fortuin, Gunnar R\"atsch
- Abstract summary: We introduce a class of models recently introduced that have been successful in different tasks on time series data.
Our model exploits the temporal structure of the data by modeling each latent channel with a GP prior and employing a structured variational distribution.
We provide evidence that we can learn meaningful disentangled representations on real-world medical time series data.
- Score: 3.403279506246879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex multivariate time series arise in many fields, ranging from computer
vision to robotics or medicine. Often we are interested in the independent
underlying factors that give rise to the high-dimensional data we are
observing. While many models have been introduced to learn such disentangled
representations, only few attempt to explicitly exploit the structure of
sequential data. We investigate the disentanglement properties of Gaussian
process variational autoencoders, a class of models recently introduced that
have been successful in different tasks on time series data. Our model exploits
the temporal structure of the data by modeling each latent channel with a GP
prior and employing a structured variational distribution that can capture
dependencies in time. We demonstrate the competitiveness of our approach
against state-of-the-art unsupervised and weakly-supervised disentanglement
methods on a benchmark task. Moreover, we provide evidence that we can learn
meaningful disentangled representations on real-world medical time series data.
Related papers
- A Survey on Diffusion Models for Time Series and Spatio-Temporal Data [92.1255811066468]
We review the use of diffusion models in time series and S-temporal data, categorizing them by model, task type, data modality, and practical application domain.
We categorize diffusion models into unconditioned and conditioned types discuss time series and S-temporal data separately.
Our survey covers their application extensively in various fields including healthcare, recommendation, climate, energy, audio, and transportation.
arXiv Detail & Related papers (2024-04-29T17:19:40Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
We propose MADS, a novel auto-decoding framework for time series imputation, built upon implicit neural representations.
We evaluate our model on two real-world datasets, and show that it outperforms state-of-the-art methods for time series imputation.
arXiv Detail & Related papers (2023-07-03T09:08:47Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - PIETS: Parallelised Irregularity Encoders for Forecasting with
Heterogeneous Time-Series [5.911865723926626]
Heterogeneity and irregularity of multi-source data sets present a significant challenge to time-series analysis.
In this work, we design a novel architecture, PIETS, to model heterogeneous time-series.
We show that PIETS is able to effectively model heterogeneous temporal data and outperforms other state-of-the-art approaches in the prediction task.
arXiv Detail & Related papers (2021-09-30T20:01:19Z) - Stacking VAE with Graph Neural Networks for Effective and Interpretable
Time Series Anomaly Detection [5.935707085640394]
We propose a stacking variational auto-encoder (VAE) model with graph neural networks for the effective and interpretable time-series anomaly detection.
We show that our proposed model outperforms the strong baselines on three public datasets with considerable improvements.
arXiv Detail & Related papers (2021-05-18T09:50:00Z) - Model-Attentive Ensemble Learning for Sequence Modeling [86.4785354333566]
We present Model-Attentive Ensemble learning for Sequence modeling (MAES)
MAES is a mixture of time-series experts which leverages an attention-based gating mechanism to specialize the experts on different sequence dynamics and adaptively weight their predictions.
We demonstrate that MAES significantly out-performs popular sequence models on datasets subject to temporal shift.
arXiv Detail & Related papers (2021-02-23T05:23:35Z) - Multivariate Time-series Anomaly Detection via Graph Attention Network [27.12694738711663]
Anomaly detection on multivariate time-series is of great importance in both data mining research and industrial applications.
One major limitation is that they do not capture the relationships between different time-series explicitly.
We propose a novel self-supervised framework for multivariate time-series anomaly detection to address this issue.
arXiv Detail & Related papers (2020-09-04T07:46:19Z) - Interpretable Deep Representation Learning from Temporal Multi-view Data [4.2179426073904995]
We propose a generative model based on variational autoencoder and a recurrent neural network to infer the latent dynamics for multi-view temporal data.
We invoke our proposed model for analyzing three datasets on which we demonstrate the effectiveness and the interpretability of the model.
arXiv Detail & Related papers (2020-05-11T15:59:06Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.