Gaussian states and operations -- a quick reference
- URL: http://arxiv.org/abs/2102.05748v2
- Date: Wed, 30 Mar 2022 11:08:54 GMT
- Title: Gaussian states and operations -- a quick reference
- Authors: Jonatan Bohr Brask
- Abstract summary: This note serves as a concise reference for performing phase-space calculations on Gaussian states.
In particular, we list symplectic transformations for commonly used optical operations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian quantum states of bosonic systems are an important class of states.
In particular, they play a key role in quantum optics as all processes
generated by Hamiltonians up to second order in the field operators (i.e.
linear optics and quadrature squeezing) preserve Gaussianity. A powerful
approach to calculations and analysis of Gaussian states is using phase-space
variables and symplectic transformations. The purpose of this note is to serve
as a concise reference for performing phase-space calculations on Gaussian
states. In particular, we list symplectic transformations for commonly used
optical operations (displacements, beam splitters, squeezing), and formulae for
tracing out modes, treating homodyne measurements, and computing fidelities.
Related papers
- Classical simulation and quantum resource theory of non-Gaussian optics [1.3124513975412255]
We propose efficient algorithms for simulating Gaussian unitaries and measurements applied to non-Gaussian initial states.
From the perspective of quantum resource theories, we investigate the properties of this type of non-Gaussianity measure and compute optimal decomposition for states relevant to continuous-variable quantum computing.
arXiv Detail & Related papers (2024-04-10T15:53:41Z) - Classical simulation of non-Gaussian fermionic circuits [0.4972323953932129]
We argue that this problem is analogous to that of simulating Clifford circuits with non-stabilizer initial states.
Our construction is based on an extension of the covariance matrix formalism which permits to efficiently track relative phases in superpositions of Gaussian states.
It yields simulation algorithms with complexity in the number of fermions, the desired accuracy, and certain quantities capturing the degree of non-Gaussianity of the initial state.
arXiv Detail & Related papers (2023-07-24T16:12:29Z) - Deterministic Gaussian conversion protocols for non-Gaussian single-mode
resources [58.720142291102135]
We show that cat and binomial states are approximately equivalent for finite energy, while this equivalence was previously known only in the infinite-energy limit.
We also consider the generation of cat states from photon-added and photon-subtracted squeezed states, improving over known schemes by introducing additional squeezing operations.
arXiv Detail & Related papers (2022-04-07T11:49:54Z) - QuGIT: a numerical toolbox for Gaussian quantum states [0.0]
QuGIT is a python numerical toolbox based on symplectic methods specialized in efficiently simulating multimode Gaussian states and operations.
It provides a wide range of Gaussian operations on arbitrary Gaussian states, including unitaries, partial traces, tensor products, general-dyne measurements, conditional and unconditional dynamics.
arXiv Detail & Related papers (2022-01-17T11:58:14Z) - Determining ground-state phase diagrams on quantum computers via a
generalized application of adiabatic state preparation [61.49303789929307]
We use a local adiabatic ramp for state preparation to allow us to directly compute ground-state phase diagrams on a quantum computer via time evolution.
We are able to calculate an accurate phase diagram on both two and three site systems using IBM quantum machines.
arXiv Detail & Related papers (2021-12-08T23:59:33Z) - Conversion of Gaussian states under incoherent Gaussian operations [0.0]
We study when can one coherent state be converted into another under incoherent operations.
The structure of incoherent Gaussian operations of two-mode continuous-variable systems is discussed further.
arXiv Detail & Related papers (2021-10-15T13:04:49Z) - Algorithm for initializing a generalized fermionic Gaussian state on a
quantum computer [0.0]
We present explicit expressions for the central piece of a variational method developed by Shi et al.
We derive iterative analytical expressions for the evaluation of expectation values of products of fermionic creation and subroutine operators.
We present a simple gradient-descent-based algorithm that can be used as an optimization in combination with imaginary time evolution.
arXiv Detail & Related papers (2021-05-27T10:31:45Z) - Local optimization on pure Gaussian state manifolds [63.76263875368856]
We exploit insights into the geometry of bosonic and fermionic Gaussian states to develop an efficient local optimization algorithm.
The method is based on notions of descent gradient attuned to the local geometry.
We use the presented methods to collect numerical and analytical evidence for the conjecture that Gaussian purifications are sufficient to compute the entanglement of purification of arbitrary mixed Gaussian states.
arXiv Detail & Related papers (2020-09-24T18:00:36Z) - Efficient construction of tensor-network representations of many-body
Gaussian states [59.94347858883343]
We present a procedure to construct tensor-network representations of many-body Gaussian states efficiently and with a controllable error.
These states include the ground and thermal states of bosonic and fermionic quadratic Hamiltonians, which are essential in the study of quantum many-body systems.
arXiv Detail & Related papers (2020-08-12T11:30:23Z) - Gaussian conversion protocols for cubic phase state generation [104.23865519192793]
Universal quantum computing with continuous variables requires non-Gaussian resources.
The cubic phase state is a non-Gaussian state whose experimental implementation has so far remained elusive.
We introduce two protocols that allow for the conversion of a non-Gaussian state to a cubic phase state.
arXiv Detail & Related papers (2020-07-07T09:19:49Z) - Mat\'ern Gaussian processes on Riemannian manifolds [81.15349473870816]
We show how to generalize the widely-used Mat'ern class of Gaussian processes.
We also extend the generalization from the Mat'ern to the widely-used squared exponential process.
arXiv Detail & Related papers (2020-06-17T21:05:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.