L-SNet: from Region Localization to Scale Invariant Medical Image
Segmentation
- URL: http://arxiv.org/abs/2102.05971v1
- Date: Thu, 11 Feb 2021 12:29:39 GMT
- Title: L-SNet: from Region Localization to Scale Invariant Medical Image
Segmentation
- Authors: Jiahao Xie, Sheng Zhang, Jianwei Lu, Ye Luo
- Abstract summary: We propose a differentiable two-stage network architecture to tackle these problems.
In the first stage, a localization network (L-Net) locates Regions of Interest (RoIs) in a detection fashion; in the second stage, a segmentation network (S-Net) performs fine segmentation on the recalibrated RoIs.
Experimental results on the public dataset show that our method outperforms state-of-the-art coarse-to-fine models with negligible overheads.
- Score: 6.351506259996282
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coarse-to-fine models and cascade segmentation architectures are widely
adopted to solve the problem of large scale variations in medical image
segmentation. However, those methods have two primary limitations: the
first-stage segmentation becomes a performance bottleneck; the lack of overall
differentiability makes the training process of two stages asynchronous and
inconsistent. In this paper, we propose a differentiable two-stage network
architecture to tackle these problems. In the first stage, a localization
network (L-Net) locates Regions of Interest (RoIs) in a detection fashion; in
the second stage, a segmentation network (S-Net) performs fine segmentation on
the recalibrated RoIs; a RoI recalibration module between L-Net and S-Net
eliminating the inconsistencies. Experimental results on the public dataset
show that our method outperforms state-of-the-art coarse-to-fine models with
negligible computation overheads.
Related papers
- Early Fusion of Features for Semantic Segmentation [10.362589129094975]
This paper introduces a novel segmentation framework that integrates a classifier network with a reverse HRNet architecture for efficient image segmentation.
Our methodology is rigorously tested across several benchmark datasets including Mapillary Vistas, Cityscapes, CamVid, COCO, and PASCAL-VOC2012.
The results demonstrate the effectiveness of our proposed model in achieving high segmentation accuracy, indicating its potential for various applications in image analysis.
arXiv Detail & Related papers (2024-02-08T22:58:06Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel
Segmentation via Disentangling Representation Style Transfer and
Collaborative Consistency Learning [3.9562534927482704]
We propose DCDA, a novel cross-modality unsupervised domain adaptation framework for tasks with large domain shifts.
Our framework achieves Dice scores close to target-trained oracle both from OCTA to OCT and from OCT to OCTA, significantly outperforming other state-of-the-art methods.
arXiv Detail & Related papers (2022-01-13T07:03:16Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Dispensed Transformer Network for Unsupervised Domain Adaptation [21.256375606219073]
A novel unsupervised domain adaptation (UDA) method named dispensed Transformer network (DTNet) is introduced in this paper.
Our proposed network achieves the best performance in comparison with several state-of-the-art techniques.
arXiv Detail & Related papers (2021-10-28T08:27:44Z) - Enforcing Mutual Consistency of Hard Regions for Semi-supervised Medical
Image Segmentation [68.9233942579956]
We propose a novel mutual consistency network (MC-Net+) to exploit the unlabeled hard regions for semi-supervised medical image segmentation.
The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions.
We compare the segmentation results of the MC-Net+ with five state-of-the-art semi-supervised approaches on three public medical datasets.
arXiv Detail & Related papers (2021-09-21T04:47:42Z) - DONet: Dual Objective Networks for Skin Lesion Segmentation [77.9806410198298]
We propose a simple yet effective framework, named Dual Objective Networks (DONet), to improve the skin lesion segmentation.
Our DONet adopts two symmetric decoders to produce different predictions for approaching different objectives.
To address the challenge of large variety of lesion scales and shapes in dermoscopic images, we additionally propose a recurrent context encoding module (RCEM)
arXiv Detail & Related papers (2020-08-19T06:02:46Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
We propose a two-stage framework, with the first stage to quickly localize the prostate region and the second stage to precisely segment the prostate.
We introduce a novel online metric learning module through voxel-wise sampling in the multi-task network.
Our method can effectively learn more representative voxel-level features compared with the conventional learning methods with cross-entropy or Dice loss.
arXiv Detail & Related papers (2020-05-15T10:37:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.