Large Scale Distributed Collaborative Unlabeled Motion Planning with
Graph Policy Gradients
- URL: http://arxiv.org/abs/2102.06284v1
- Date: Thu, 11 Feb 2021 21:57:43 GMT
- Title: Large Scale Distributed Collaborative Unlabeled Motion Planning with
Graph Policy Gradients
- Authors: Arbaaz Khan, Vijay Kumar, Alejandro Ribeiro
- Abstract summary: We present a learning method to solve the unlabelled motion problem with motion constraints and space constraints in 2D space for a large number of robots.
We employ a graph neural network (GNN) to parameterize policies for the robots.
- Score: 122.85280150421175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we present a learning method to solve the unlabelled motion
problem with motion constraints and space constraints in 2D space for a large
number of robots. To solve the problem of arbitrary dynamics and constraints we
propose formulating the problem as a multi-agent problem. We are able to
demonstrate the scalability of our methods for a large number of robots by
employing a graph neural network (GNN) to parameterize policies for the robots.
The GNN reduces the dimensionality of the problem by learning filters that
aggregate information among robots locally, similar to how a convolutional
neural network is able to learn local features in an image. Additionally, by
employing a GNN we are also able to overcome the computational overhead of
training policies for a large number of robots by first training graph filters
for a small number of robots followed by zero-shot policy transfer to a larger
number of robots. We demonstrate the effectiveness of our framework through
various simulations.
Related papers
- Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance.
This problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation.
We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets.
arXiv Detail & Related papers (2024-09-29T23:57:25Z) - Multi-Robot Informative Path Planning for Efficient Target Mapping using Deep Reinforcement Learning [11.134855513221359]
We propose a novel deep reinforcement learning approach for multi-robot informative path planning.
We train our reinforcement learning policy via the centralized training and decentralized execution paradigm.
Our approach outperforms other state-of-the-art multi-robot target mapping approaches by 33.75% in terms of the number of discovered targets-of-interest.
arXiv Detail & Related papers (2024-09-25T14:27:37Z) - LPAC: Learnable Perception-Action-Communication Loops with Applications
to Coverage Control [80.86089324742024]
We propose a learnable Perception-Action-Communication (LPAC) architecture for the problem.
CNN processes localized perception; a graph neural network (GNN) facilitates robot communications.
Evaluations show that the LPAC models outperform standard decentralized and centralized coverage control algorithms.
arXiv Detail & Related papers (2024-01-10T00:08:00Z) - Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
We propose a neural network model that returns a differentiable collision cost based on robot pose, obstacle map, and robot footprint.
Our architecture includes neural image encoders, which transform obstacle maps and robot footprints into embeddings.
Experiment on Husky UGV mobile robot showed that our approach allows real-time and safe local planning.
arXiv Detail & Related papers (2023-10-25T05:00:21Z) - Scalable Multi-robot Motion Planning for Congested Environments With
Topological Guidance [2.846144602096543]
Multi-robot motion planning (MRMP) is the problem of finding collision-free paths for a set of robots in a continuous state space.
We extend an existing single-robot motion planning method to leverage the improved efficiency provided by topological guidance.
We demonstrate our method's ability to efficiently plan paths in complex environments with many narrow passages, scaling to robot teams of size up to 25 times larger than existing methods.
arXiv Detail & Related papers (2022-10-13T16:26:01Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Graph Neural Networks for Decentralized Multi-Robot Submodular Action
Selection [101.38634057635373]
We focus on applications where robots are required to jointly select actions to maximize team submodular objectives.
We propose a general-purpose learning architecture towards submodular at scale, with decentralized communications.
We demonstrate the performance of our GNN-based learning approach in a scenario of active target coverage with large networks of robots.
arXiv Detail & Related papers (2021-05-18T15:32:07Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.