Multi-source Pseudo-label Learning of Semantic Segmentation for the
Scene Recognition of Agricultural Mobile Robots
- URL: http://arxiv.org/abs/2102.06386v1
- Date: Fri, 12 Feb 2021 08:17:10 GMT
- Title: Multi-source Pseudo-label Learning of Semantic Segmentation for the
Scene Recognition of Agricultural Mobile Robots
- Authors: Shigemichi Matsuzaki, Jun Miura and Hiroaki Masuzawa
- Abstract summary: This paper describes a novel method of training a semantic segmentation model for environment recognition of agricultural mobile robots by unsupervised domain adaptation.
We propose to use multiple publicly available datasets of outdoor images as source datasets.
We demonstrate in experiments that by combining our proposed method of pseudo-label generation with the existing training method, the performance was improved by up to 14.3% of mIoU.
- Score: 0.6445605125467573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper describes a novel method of training a semantic segmentation model
for environment recognition of agricultural mobile robots by unsupervised
domain adaptation exploiting publicly available datasets of outdoor scenes that
are different from our target environments i.e., greenhouses. In conventional
semantic segmentation methods, the labels are given by manual annotation, which
is a tedious and time-consuming task. A method to work around the necessity of
the manual annotation is unsupervised domain adaptation (UDA) that transfer
knowledge from labeled source datasets to unlabeled target datasets. Most of
the UDA methods of semantic segmentation are validated by tasks of adaptation
from non-photorealistic synthetic images of urban scenes to real ones. However,
the effectiveness of the methods is not well studied in the case of adaptation
to other types of environments, such as greenhouses. In addition, it is not
always possible to prepare appropriate source datasets for such environments.
In this paper, we adopt an existing training method of UDA to a task of
training a model for greenhouse images. We propose to use multiple publicly
available datasets of outdoor images as source datasets, and also propose a
simple yet effective method of generating pseudo-labels by transferring
knowledge from the source datasets that have different appearance and a label
set from the target datasets. We demonstrate in experiments that by combining
our proposed method of pseudo-label generation with the existing training
method, the performance was improved by up to 14.3% of mIoU compared to the
best score of the single-source training.
Related papers
- Unsupervised Domain Adaptation for Semantic Segmentation with Pseudo
Label Self-Refinement [9.69089112870202]
We propose an auxiliary pseudo-label refinement network (PRN) for online refining of the pseudo labels and also localizing the pixels whose predicted labels are likely to be noisy.
We evaluate our approach on benchmark datasets with three different domain shifts, and our approach consistently performs significantly better than the previous state-of-the-art methods.
arXiv Detail & Related papers (2023-10-25T20:31:07Z) - Multi-Source Soft Pseudo-Label Learning with Domain Similarity-based
Weighting for Semantic Segmentation [2.127049691404299]
This paper describes a method of domain adaptive training for semantic segmentation using multiple source datasets.
We propose a soft pseudo-label generation method by integrating predicted object probabilities from multiple source models.
arXiv Detail & Related papers (2023-03-02T05:20:36Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
Unsupervised sim-to-real domain adaptation (UDA) for semantic segmentation aims to improve the real-world test performance of a model trained on simulated data.
Traditional UDA often assumes that there are abundant unlabeled real-world data samples available during training for the adaptation.
We explore the one-shot unsupervised sim-to-real domain adaptation (OSUDA) and generalization problem, where only one real-world data sample is available.
arXiv Detail & Related papers (2022-12-14T15:54:15Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Self-supervised Pre-training for Semantic Segmentation in an Indoor
Scene [8.357801312689622]
We propose RegConsist, a method for self-supervised pre-training of a semantic segmentation model.
We use a variant of contrastive learning to train a DCNN model for predicting semantic segmentation from RGB views in the target environment.
The proposed method outperforms models pre-trained on ImageNet and achieves competitive performance when using models that are trained for exactly the same task but on a different dataset.
arXiv Detail & Related papers (2022-10-04T20:10:14Z) - Cooperative Self-Training for Multi-Target Adaptive Semantic
Segmentation [26.79776306494929]
We propose a self-training strategy that employs pseudo-labels to induce cooperation among multiple domain-specific classifiers.
We employ feature stylization as an efficient way to generate image views that forms an integral part of self-training.
arXiv Detail & Related papers (2022-10-04T13:03:17Z) - Source-Free Domain Adaptive Fundus Image Segmentation with Denoised
Pseudo-Labeling [56.98020855107174]
Domain adaptation typically requires to access source domain data to utilize their distribution information for domain alignment with the target data.
In many real-world scenarios, the source data may not be accessible during the model adaptation in the target domain due to privacy issue.
We present a novel denoised pseudo-labeling method for this problem, which effectively makes use of the source model and unlabeled target data.
arXiv Detail & Related papers (2021-09-19T06:38:21Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
We propose a curriculum-style self-training approach for source-free domain adaptive semantic segmentation.
Our method yields state-of-the-art performance on source-free semantic segmentation tasks for both synthetic-to-real and adverse conditions.
arXiv Detail & Related papers (2021-06-22T10:21:39Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z) - Consistency Regularization with High-dimensional Non-adversarial
Source-guided Perturbation for Unsupervised Domain Adaptation in Segmentation [15.428323201750144]
BiSIDA employs consistency regularization to efficiently exploit information from the unlabeled target dataset.
BiSIDA achieves new state-of-the-art on two commonly-used synthetic-to-real domain adaptation benchmarks.
arXiv Detail & Related papers (2020-09-18T03:26:44Z) - Adversarial Knowledge Transfer from Unlabeled Data [62.97253639100014]
We present a novel Adversarial Knowledge Transfer framework for transferring knowledge from internet-scale unlabeled data to improve the performance of a classifier.
An important novel aspect of our method is that the unlabeled source data can be of different classes from those of the labeled target data, and there is no need to define a separate pretext task.
arXiv Detail & Related papers (2020-08-13T08:04:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.