Infinitely Deep Bayesian Neural Networks with Stochastic Differential
Equations
- URL: http://arxiv.org/abs/2102.06559v1
- Date: Fri, 12 Feb 2021 14:48:58 GMT
- Title: Infinitely Deep Bayesian Neural Networks with Stochastic Differential
Equations
- Authors: Winnie Xu, Ricky T.Q. Chen, Xuechen Li, David Duvenaud
- Abstract summary: We perform scalable approximate inference in a recently-proposed family of continuous-depth neural networks.
We demonstrate gradient-based variational inference, producing arbitrarily-flexible approximate posteriors.
This approach further inherits the memory-efficient training and tunable precision of neural ODEs.
- Score: 37.02511585732081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We perform scalable approximate inference in a recently-proposed family of
continuous-depth Bayesian neural networks. In this model class, uncertainty
about separate weights in each layer produces dynamics that follow a stochastic
differential equation (SDE). We demonstrate gradient-based stochastic
variational inference in this infinite-parameter setting, producing
arbitrarily-flexible approximate posteriors. We also derive a novel gradient
estimator that approaches zero variance as the approximate posterior approaches
the true posterior. This approach further inherits the memory-efficient
training and tunable precision of neural ODEs.
Related papers
- Epistemic Uncertainty and Observation Noise with the Neural Tangent Kernel [12.464924018243988]
Recent work has shown that training wide neural networks with gradient descent is formally equivalent to computing the mean of the posterior distribution in a Gaussian Process.
We show how to deal with non-zero aleatoric noise and derive an estimator for the posterior covariance.
arXiv Detail & Related papers (2024-09-06T00:34:44Z) - Scalable Bayesian Inference in the Era of Deep Learning: From Gaussian Processes to Deep Neural Networks [0.5827521884806072]
Large neural networks trained on large datasets have become the dominant paradigm in machine learning.
This thesis develops scalable methods to equip neural networks with model uncertainty.
arXiv Detail & Related papers (2024-04-29T23:38:58Z) - Noise in the reverse process improves the approximation capabilities of
diffusion models [27.65800389807353]
In Score based Generative Modeling (SGMs), the state-of-the-art in generative modeling, reverse processes are known to perform better than their deterministic counterparts.
This paper delves into the heart of this phenomenon, comparing neural ordinary differential equations (ODEs) and neural dimension equations (SDEs) as reverse processes.
We analyze the ability of neural SDEs to approximate trajectories of the Fokker-Planck equation, revealing the advantages of neurality.
arXiv Detail & Related papers (2023-12-13T02:39:10Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Scaling Structured Inference with Randomization [64.18063627155128]
We propose a family of dynamic programming (RDP) randomized for scaling structured models to tens of thousands of latent states.
Our method is widely applicable to classical DP-based inference.
It is also compatible with automatic differentiation so can be integrated with neural networks seamlessly.
arXiv Detail & Related papers (2021-12-07T11:26:41Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Disentangling the Gauss-Newton Method and Approximate Inference for
Neural Networks [96.87076679064499]
We disentangle the generalized Gauss-Newton and approximate inference for Bayesian deep learning.
We find that the Gauss-Newton method simplifies the underlying probabilistic model significantly.
The connection to Gaussian processes enables new function-space inference algorithms.
arXiv Detail & Related papers (2020-07-21T17:42:58Z) - Mean-Field Approximation to Gaussian-Softmax Integral with Application
to Uncertainty Estimation [23.38076756988258]
We propose a new single-model based approach to quantify uncertainty in deep neural networks.
We use a mean-field approximation formula to compute an analytically intractable integral.
Empirically, the proposed approach performs competitively when compared to state-of-the-art methods.
arXiv Detail & Related papers (2020-06-13T07:32:38Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z) - Bayesian Neural Network via Stochastic Gradient Descent [0.0]
We show how gradient estimation can be applied on bayesian neural networks by gradient estimation techniques.
Our work considerably beats the previous state of the art approaches for regression using bayesian neural networks.
arXiv Detail & Related papers (2020-06-04T18:33:59Z) - Stochasticity in Neural ODEs: An Empirical Study [68.8204255655161]
Regularization of neural networks (e.g. dropout) is a widespread technique in deep learning that allows for better generalization.
We show that data augmentation during the training improves the performance of both deterministic and versions of the same model.
However, the improvements obtained by the data augmentation completely eliminate the empirical regularization gains, making the performance of neural ODE and neural SDE negligible.
arXiv Detail & Related papers (2020-02-22T22:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.