Machine Learning for Mechanical Ventilation Control
- URL: http://arxiv.org/abs/2102.06779v1
- Date: Fri, 12 Feb 2021 21:23:33 GMT
- Title: Machine Learning for Mechanical Ventilation Control
- Authors: Daniel Suo, Udaya Ghai, Edgar Minasyan, Paula Gradu, Xinyi Chen, Naman
Agarwal, Cyril Zhang, Karan Singh, Julienne LaChance, Tom Zadjel, Manuel
Schottdorf, Daniel Cohen, Elad Hazan
- Abstract summary: We consider the problem of controlling an invasive mechanical ventilator for pressure-controlled ventilation.
A PID controller must let air in and out of a sedated patient's lungs according to a trajectory of airway pressures specified by a clinician.
We show that our controllers are able to track target pressure waveforms significantly better than PID controllers.
- Score: 52.65490904484772
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of controlling an invasive mechanical ventilator for
pressure-controlled ventilation: a controller must let air in and out of a
sedated patient's lungs according to a trajectory of airway pressures specified
by a clinician.
Hand-tuned PID controllers and similar variants have comprised the industry
standard for decades, yet can behave poorly by over- or under-shooting their
target or oscillating rapidly.
We consider a data-driven machine learning approach: First, we train a
simulator based on data we collect from an artificial lung. Then, we train deep
neural network controllers on these simulators.We show that our controllers are
able to track target pressure waveforms significantly better than PID
controllers.
We further show that a learned controller generalizes across lungs with
varying characteristics much more readily than PID controllers do.
Related papers
- A comparison of RL-based and PID controllers for 6-DOF swimming robots:
hybrid underwater object tracking [8.362739554991073]
We present an exploration and assessment of employing a centralized deep Q-network (DQN) controller as a substitute for PID controllers.
Our primary focus centers on illustrating this transition with the specific case of underwater object tracking.
Our experiments, conducted within a Unity-based simulator, validate the effectiveness of a centralized RL agent over separated PID controllers.
arXiv Detail & Related papers (2024-01-29T23:14:15Z) - Designing a Robust Low-Level Agnostic Controller for a Quadrotor with
Actor-Critic Reinforcement Learning [0.38073142980732994]
We introduce domain randomization during the training phase of a low-level waypoint guidance controller based on Soft Actor-Critic.
We show that, by introducing a certain degree of uncertainty in quadrotor dynamics during training, we can obtain a controller that is capable to perform the proposed task using a larger variation of quadrotor parameters.
arXiv Detail & Related papers (2022-10-06T14:58:19Z) - Learning a Single Near-hover Position Controller for Vastly Different
Quadcopters [56.37274861303324]
This paper proposes an adaptive near-hover position controller for quadcopters.
It can be deployed to quadcopters of very different mass, size and motor constants.
It also shows rapid adaptation to unknown disturbances during runtime.
arXiv Detail & Related papers (2022-09-19T17:55:05Z) - Skip Training for Multi-Agent Reinforcement Learning Controller for
Industrial Wave Energy Converters [94.84709449845352]
Recent Wave Energy Converters (WEC) are equipped with multiple legs and generators to maximize energy generation.
Traditional controllers have shown limitations to capture complex wave patterns and the controllers must efficiently maximize the energy capture.
This paper introduces a Multi-Agent Reinforcement Learning controller (MARL), which outperforms the traditionally used spring damper controller.
arXiv Detail & Related papers (2022-09-13T00:20:31Z) - Adapting Rapid Motor Adaptation for Bipedal Robots [73.5914982741483]
We leverage recent advances in rapid adaptation for locomotion control, and extend them to work on bipedal robots.
A-RMA adapts the base policy for the imperfect extrinsics estimator by finetuning it using model-free RL.
We demonstrate that A-RMA outperforms a number of RL-based baseline controllers and model-based controllers in simulation.
arXiv Detail & Related papers (2022-05-30T17:59:09Z) - Machine Learning for Mechanical Ventilation Control (Extended Abstract) [52.65490904484772]
Mechanical ventilation is one of the most widely used therapies in the ICU.
We frame these as a control problem: ventilators must let air in and out of the patient's lungs according to a prescribed trajectory of airway pressure.
Our data-driven approach learns to control an invasive ventilator by training on a simulator itself trained on data collected from the ventilator.
This method outperforms popular reinforcement learning algorithms and even controls the physical ventilator more accurately and robustly than PID.
arXiv Detail & Related papers (2021-11-19T20:54:41Z) - Data-Efficient Deep Reinforcement Learning for Attitude Control of
Fixed-Wing UAVs: Field Experiments [0.37798600249187286]
We show that DRL can successfully learn to perform attitude control of a fixed-wing UAV operating directly on the original nonlinear dynamics.
We deploy the learned controller on the UAV in flight tests, demonstrating comparable performance to the state-of-the-art ArduPlane proportional-integral-derivative (PID) attitude controller.
arXiv Detail & Related papers (2021-11-07T19:07:46Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
We present a framework that synthesizes robust controllers for a quadruped robot.
A high-level controller learns to choose from a set of primitives in response to changes in the environment.
A low-level controller that utilizes an established control method to robustly execute the primitives.
arXiv Detail & Related papers (2020-09-21T16:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.