Attention-gated convolutional neural networks for off-resonance
correction of spiral real-time MRI
- URL: http://arxiv.org/abs/2102.07271v1
- Date: Sun, 14 Feb 2021 23:43:50 GMT
- Title: Attention-gated convolutional neural networks for off-resonance
correction of spiral real-time MRI
- Authors: Yongwan Lim, Shrikanth S. Narayanan, Krishna S. Nayak
- Abstract summary: We present a new CNN-based off-resonance correction method that incorporates an attention-gate mechanism.
We demonstrate improved performance with the attention-gate, on 1.5 Tesla spiral speech RT-MRI, compared to existing off-resonance correction methods.
- Score: 58.11266896200967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiral acquisitions are preferred in real-time MRI because of their
efficiency, which has made it possible to capture vocal tract dynamics during
natural speech. A fundamental limitation of spirals is blurring and signal loss
due to off-resonance, which degrades image quality at air-tissue boundaries.
Here, we present a new CNN-based off-resonance correction method that
incorporates an attention-gate mechanism. This leverages spatial and channel
relationships of filtered outputs and improves the expressiveness of the
networks. We demonstrate improved performance with the attention-gate, on 1.5
Tesla spiral speech RT-MRI, compared to existing off-resonance correction
methods.
Related papers
- Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Cine cardiac MRI reconstruction using a convolutional recurrent network
with refinement [9.173298795526152]
We investigate the use of a convolutional recurrent neural network (CRNN) architecture to exploit temporal correlations in cardiac MRI reconstruction.
This is combined with a single-image super-resolution refinement module to improve single coil reconstruction by 4.4% in structural similarity and 3.9% in normalised mean square error.
The proposed model demonstrates considerable enhancements compared to the baseline case and holds promising potential for further improving cardiac MRI reconstruction.
arXiv Detail & Related papers (2023-09-23T14:07:04Z) - Spiking-LEAF: A Learnable Auditory front-end for Spiking Neural Networks [53.31894108974566]
Spiking-LEAF is a learnable auditory front-end meticulously designed for SNN-based speech processing.
On keyword spotting and speaker identification tasks, the proposed Spiking-LEAF outperforms both SOTA spiking auditory front-ends.
arXiv Detail & Related papers (2023-09-18T04:03:05Z) - Hyperspectral Image Denoising via Self-Modulating Convolutional Neural
Networks [15.700048595212051]
We introduce a self-modulating convolutional neural network which utilizes correlated spectral and spatial information.
At the core of the model lies a novel block, which allows the network to transform the features in an adaptive manner based on the adjacent spectral data.
Experimental analysis on both synthetic and real data shows that the proposed SM-CNN outperforms other state-of-the-art HSI denoising methods.
arXiv Detail & Related papers (2023-09-15T06:57:43Z) - Denoising Simulated Low-Field MRI (70mT) using Denoising Autoencoders
(DAE) and Cycle-Consistent Generative Adversarial Networks (Cycle-GAN) [68.8204255655161]
Cycle Consistent Generative Adversarial Network (GAN) is implemented to yield high-field, high resolution, high signal-to-noise ratio (SNR) Magnetic Resonance Imaging (MRI) images.
Images were utilized to train a Denoising Autoencoder (DAE) and a Cycle-GAN, with paired and unpaired cases.
This work demonstrates the use of a generative deep learning model that can outperform classical DAEs to improve low-field MRI images and does not require image pairs.
arXiv Detail & Related papers (2023-07-12T00:01:00Z) - Implicit Neural Networks with Fourier-Feature Inputs for Free-breathing
Cardiac MRI Reconstruction [21.261567937245808]
We propose a reconstruction approach based on representing the beating heart with an implicit neural network and fitting the network so that the representation of the heart is consistent with the measurements.
Our method achieves reconstruction quality on par with or slightly better than state-of-the-art untrained convolutional neural networks and superior image quality.
arXiv Detail & Related papers (2023-05-11T14:14:30Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ADRN: Attention-based Deep Residual Network for Hyperspectral Image
Denoising [52.01041506447195]
We propose an attention-based deep residual network to learn a mapping from noisy HSI to the clean one.
Experimental results demonstrate that our proposed ADRN scheme outperforms the state-of-the-art methods both in quantitative and visual evaluations.
arXiv Detail & Related papers (2020-03-04T08:36:27Z) - CNN-based InSAR Denoising and Coherence Metric [4.051689818086047]
Noise corrupts microwave reflections received at satellite and contaminates the signal's wrapped phase.
We introduce Convolutional Neural Networks (CNNs) to learn InSAR image denoising filters.
We show the effectiveness of autoencoder CNN architectures to learn InSAR image denoising filters.
arXiv Detail & Related papers (2020-01-20T03:20:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.