Guided Interpolation for Adversarial Training
- URL: http://arxiv.org/abs/2102.07327v1
- Date: Mon, 15 Feb 2021 03:55:08 GMT
- Title: Guided Interpolation for Adversarial Training
- Authors: Chen Chen, Jingfeng Zhang, Xilie Xu, Tianlei Hu, Gang Niu, Gang Chen,
Masashi Sugiyama
- Abstract summary: As training progresses, the training data becomes less and less attackable, undermining the robustness enhancement.
We propose the guided framework (GIF), which employs the previous epoch's meta information to guide the data's adversarial variants.
Compared with the vanilla mixup, the GIF can provide a higher ratio of attackable data, which is beneficial to the robustness enhancement.
- Score: 73.91493448651306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To enhance adversarial robustness, adversarial training learns deep neural
networks on the adversarial variants generated by their natural data. However,
as the training progresses, the training data becomes less and less attackable,
undermining the robustness enhancement. A straightforward remedy is to
incorporate more training data, but sometimes incurring an unaffordable cost.
In this paper, to mitigate this issue, we propose the guided interpolation
framework (GIF): in each epoch, the GIF employs the previous epoch's meta
information to guide the data's interpolation. Compared with the vanilla mixup,
the GIF can provide a higher ratio of attackable data, which is beneficial to
the robustness enhancement; it meanwhile mitigates the model's linear behavior
between classes, where the linear behavior is favorable to generalization but
not to the robustness. As a result, the GIF encourages the model to predict
invariantly in the cluster of each class. Experiments demonstrate that the GIF
can indeed enhance adversarial robustness on various adversarial training
methods and various datasets.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - PIAT: Parameter Interpolation based Adversarial Training for Image
Classification [19.276850361815953]
We propose a novel framework, termed Interpolation based Adversarial Training (PIAT), that makes full use of the historical information during training.
Our framework is general and could further boost the robust accuracy when combined with other adversarial training methods.
arXiv Detail & Related papers (2023-03-24T12:22:34Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Combating Exacerbated Heterogeneity for Robust Models in Federated
Learning [91.88122934924435]
Combination of adversarial training and federated learning can lead to the undesired robustness deterioration.
We propose a novel framework called Slack Federated Adversarial Training (SFAT)
We verify the rationality and effectiveness of SFAT on various benchmarked and real-world datasets.
arXiv Detail & Related papers (2023-03-01T06:16:15Z) - Efficient and Effective Augmentation Strategy for Adversarial Training [48.735220353660324]
Adversarial training of Deep Neural Networks is known to be significantly more data-hungry than standard training.
We propose Diverse Augmentation-based Joint Adversarial Training (DAJAT) to use data augmentations effectively in adversarial training.
arXiv Detail & Related papers (2022-10-27T10:59:55Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.