REST: Relational Event-driven Stock Trend Forecasting
- URL: http://arxiv.org/abs/2102.07372v1
- Date: Mon, 15 Feb 2021 07:22:09 GMT
- Title: REST: Relational Event-driven Stock Trend Forecasting
- Authors: Wentao Xu, Weiqing Liu, Chang Xu, Jiang Bian, Jian Yin, Tie-Yan Liu
- Abstract summary: We propose a relational event-driven stock trend forecasting (REST) framework, which can address the shortcoming of existing methods.
To remedy the first shortcoming, we propose to model the stock context and learn the effect of event information on the stocks under different contexts.
To address the second shortcoming, we construct a stock graph and design a new propagation layer to propagate the effect of event information from related stocks.
- Score: 76.08435590771357
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Stock trend forecasting, aiming at predicting the stock future trends, is
crucial for investors to seek maximized profits from the stock market. Many
event-driven methods utilized the events extracted from news, social media, and
discussion board to forecast the stock trend in recent years. However, existing
event-driven methods have two main shortcomings: 1) overlooking the influence
of event information differentiated by the stock-dependent properties; 2)
neglecting the effect of event information from other related stocks. In this
paper, we propose a relational event-driven stock trend forecasting (REST)
framework, which can address the shortcoming of existing methods. To remedy the
first shortcoming, we propose to model the stock context and learn the effect
of event information on the stocks under different contexts. To address the
second shortcoming, we construct a stock graph and design a new propagation
layer to propagate the effect of event information from related stocks. The
experimental studies on the real-world data demonstrate the efficiency of our
REST framework. The results of investment simulation show that our framework
can achieve a higher return of investment than baselines.
Related papers
- Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) is a self-supervised learning approach rooted in Contrastive Predictive Coding (CPC)
Our research delves deep into the intricacies of stock data, evaluating how various models handle the rapidly changing relevance of earnings data over time and over different sectors.
CET's foundation on CPC allows for a nuanced understanding, facilitating consistent stock predictions even as the earnings data ages.
arXiv Detail & Related papers (2024-09-25T22:09:59Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Stock Market Price Prediction: A Hybrid LSTM and Sequential
Self-Attention based Approach [3.8154633976469086]
We propose a new model named Long Short-Term Memory (LSTM) with Sequential Self-Attention Mechanism (LSTM-SSAM)
We conduct extensive experiments on the three stock datasets: SBIN,BANK, and BANKBARODA.
The experimental results prove the effectiveness and feasibility of the proposed model compared to existing models.
arXiv Detail & Related papers (2023-08-07T14:21:05Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
Several methods were recently proposed to mine the shared information through stock concepts extracted from the Web to improve the forecasting results.
Previous work assumes the connections between stocks and concepts are stationary, and neglects the dynamic relevance between stocks and concepts.
We propose a novel stock trend forecasting framework that can adequately mine the concept-oriented shared information from predefined concepts and hidden concepts.
arXiv Detail & Related papers (2021-10-26T14:04:04Z) - Graph-Based Learning for Stock Movement Prediction with Textual and
Relational Data [0.0]
We propose a new stock movement prediction framework: Multi-Graph Recurrent Network for Stock Forecasting (MGRN)
This architecture allows to combine the textual sentiment from financial news and multiple relational information extracted from other financial data.
Through an accuracy test and a trading simulation on the stocks in the STOXX Europe 600 index, we demonstrate a better performance from our model than other benchmarks.
arXiv Detail & Related papers (2021-07-22T21:57:18Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements.
The sentiment captured from news headlines could be used as a signal to predict market returns; the same does not apply for volatility.
We developed an accurate classifier for the prediction of market volatility in response to the arrival of new information.
arXiv Detail & Related papers (2020-12-10T01:15:48Z) - Event-Driven Learning of Systematic Behaviours in Stock Markets [1.4649095013539173]
We leverage financial news to train a neural network that detects latent event-stock linkages and stock markets' systematic behaviours.
Our proposed pipeline includes (1) a combined event extraction method that utilizes Open Information Extraction and neural co-reference resolution, (2) a BERT/ALBERT enhanced representation of events, and (3) an extended hierarchical attention network that includes attentions on event, news and temporal levels.
Our pipeline achieves significantly better accuracies and higher simulated annualized returns than state-of-the-art models when being applied to predicting Standard&Poor 500, Dow Jones, Nasdaq indices and 10 individual stocks.
arXiv Detail & Related papers (2020-10-23T16:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.