ScrofaZero: Mastering Trick-taking Poker Game Gongzhu by Deep
Reinforcement Learning
- URL: http://arxiv.org/abs/2102.07495v1
- Date: Mon, 15 Feb 2021 12:01:44 GMT
- Title: ScrofaZero: Mastering Trick-taking Poker Game Gongzhu by Deep
Reinforcement Learning
- Authors: Naichen Shi and Ruichen Li and Sun Youran
- Abstract summary: We study Gongzhu, a trick-taking game analogous to, but slightly simpler than contract bridge.
We train a strong Gongzhu AI ScrofaZero from textittabula rasa by deep reinforcement learning.
We introduce new techniques for imperfect information game including stratified sampling, importance weighting, integral over equivalent class, Bayesian inference, etc.
- Score: 2.7178968279054936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: People have made remarkable progress in game AIs, especially in domain of
perfect information game. However, trick-taking poker game, as a popular form
of imperfect information game, has been regarded as a challenge for a long
time. Since trick-taking game requires high level of not only reasoning, but
also inference to excel, it can be a new milestone for imperfect information
game AI. We study Gongzhu, a trick-taking game analogous to, but slightly
simpler than contract bridge. Nonetheless, the strategies of Gongzhu are
complex enough for both human and computer players. We train a strong Gongzhu
AI ScrofaZero from \textit{tabula rasa} by deep reinforcement learning, while
few previous efforts on solving trick-taking poker game utilize the
representation power of neural networks. Also, we introduce new techniques for
imperfect information game including stratified sampling, importance weighting,
integral over equivalent class, Bayesian inference, etc. Our AI can achieve
human expert level performance. The methodologies in building our program can
be easily transferred into a wide range of trick-taking games.
Related papers
- Reinforcement Learning for High-Level Strategic Control in Tower Defense Games [47.618236610219554]
In strategy games, one of the most important aspects of game design is maintaining a sense of challenge for players.
We propose an automated approach that combines traditional scripted methods with reinforcement learning.
Results show that combining a learned approach, such as reinforcement learning, with a scripted AI produces a higher-performing and more robust agent than using only AI.
arXiv Detail & Related papers (2024-06-12T08:06:31Z) - PokerGPT: An End-to-End Lightweight Solver for Multi-Player Texas
Hold'em via Large Language Model [14.14786217204364]
Poker, also known as Texas Hold'em, has always been a typical research target within imperfect information games (IIGs)
We introduce PokerGPT, an end-to-end solver for playing Texas Hold'em with arbitrary number of players and gaining high win rates.
arXiv Detail & Related papers (2024-01-04T13:27:50Z) - DanZero+: Dominating the GuanDan Game through Reinforcement Learning [95.90682269990705]
We develop an AI program for an exceptionally complex and popular card game called GuanDan.
We first put forward an AI program named DanZero for this game.
In order to further enhance the AI's capabilities, we apply policy-based reinforcement learning algorithm to GuanDan.
arXiv Detail & Related papers (2023-12-05T08:07:32Z) - DanZero: Mastering GuanDan Game with Reinforcement Learning [121.93690719186412]
Card game AI has always been a hot topic in the research of artificial intelligence.
In this paper, we are devoted to developing an AI program for a more complex card game, GuanDan.
We propose the first AI program DanZero for GuanDan using reinforcement learning technique.
arXiv Detail & Related papers (2022-10-31T06:29:08Z) - Mastering the Game of Stratego with Model-Free Multiagent Reinforcement
Learning [86.37438204416435]
Stratego is one of the few iconic board games that Artificial Intelligence (AI) has not yet mastered.
Decisions in Stratego are made over a large number of discrete actions with no obvious link between action and outcome.
DeepNash beats existing state-of-the-art AI methods in Stratego and achieved a yearly (2022) and all-time top-3 rank on the Gravon games platform.
arXiv Detail & Related papers (2022-06-30T15:53:19Z) - Applying supervised and reinforcement learning methods to create
neural-network-based agents for playing StarCraft II [0.0]
We propose a neural network architecture for playing the full two-player match of StarCraft II trained with general-purpose supervised and reinforcement learning.
Our implementation achieves a non-trivial performance when compared to the in-game scripted bots.
arXiv Detail & Related papers (2021-09-26T20:08:10Z) - Suphx: Mastering Mahjong with Deep Reinforcement Learning [114.68233321904623]
We design an AI for Mahjong, named Suphx, based on deep reinforcement learning with some newly introduced techniques.
Suphx has demonstrated stronger performance than most top human players in terms of stable rank.
This is the first time that a computer program outperforms most top human players in Mahjong.
arXiv Detail & Related papers (2020-03-30T16:18:16Z) - Provable Self-Play Algorithms for Competitive Reinforcement Learning [48.12602400021397]
We study self-play in competitive reinforcement learning under the setting of Markov games.
We show that a self-play algorithm achieves regret $tildemathcalO(sqrtT)$ after playing $T$ steps of the game.
We also introduce an explore-then-exploit style algorithm, which achieves a slightly worse regret $tildemathcalO(T2/3)$, but is guaranteed to run in time even in the worst case.
arXiv Detail & Related papers (2020-02-10T18:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.