How to Learn when Data Reacts to Your Model: Performative Gradient
Descent
- URL: http://arxiv.org/abs/2102.07698v2
- Date: Tue, 16 Feb 2021 16:07:05 GMT
- Title: How to Learn when Data Reacts to Your Model: Performative Gradient
Descent
- Authors: Zachary Izzo, Lexing Ying, James Zou
- Abstract summary: We introduce performative gradient descent (PerfGD), which is the first algorithm which converges to the performatively optimal point.
PerfGD explicitly captures how changes in the model affects the data distribution and is simple to use.
- Score: 10.074466859579571
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performative distribution shift captures the setting where the choice of
which ML model is deployed changes the data distribution. For example, a bank
which uses the number of open credit lines to determine a customer's risk of
default on a loan may induce customers to open more credit lines in order to
improve their chances of being approved. Because of the interactions between
the model and data distribution, finding the optimal model parameters is
challenging. Works in this area have focused on finding stable points, which
can be far from optimal. Here we introduce performative gradient descent
(PerfGD), which is the first algorithm which provably converges to the
performatively optimal point. PerfGD explicitly captures how changes in the
model affects the data distribution and is simple to use. We support our
findings with theory and experiments.
Related papers
- Optimal Classification under Performative Distribution Shift [13.508249764979075]
We propose a novel view in which performative effects are modelled as push-forward measures.
We prove the convexity of the performative risk under a new set of assumptions.
We also establish a connection with adversarially robust classification by reformulating the minimization of the performative risk as a min-max variational problem.
arXiv Detail & Related papers (2024-11-04T12:20:13Z) - Rejection via Learning Density Ratios [50.91522897152437]
Classification with rejection emerges as a learning paradigm which allows models to abstain from making predictions.
We propose a different distributional perspective, where we seek to find an idealized data distribution which maximizes a pretrained model's performance.
Our framework is tested empirically over clean and noisy datasets.
arXiv Detail & Related papers (2024-05-29T01:32:17Z) - Federated Causal Discovery from Heterogeneous Data [70.31070224690399]
We propose a novel FCD method attempting to accommodate arbitrary causal models and heterogeneous data.
These approaches involve constructing summary statistics as a proxy of the raw data to protect data privacy.
We conduct extensive experiments on synthetic and real datasets to show the efficacy of our method.
arXiv Detail & Related papers (2024-02-20T18:53:53Z) - Federated Skewed Label Learning with Logits Fusion [23.062650578266837]
Federated learning (FL) aims to collaboratively train a shared model across multiple clients without transmitting their local data.
We propose FedBalance, which corrects the optimization bias among local models by calibrating their logits.
Our method can gain 13% higher average accuracy compared with state-of-the-art methods.
arXiv Detail & Related papers (2023-11-14T14:37:33Z) - Performative Federated Learning: A Solution to Model-Dependent and
Heterogeneous Distribution Shifts [24.196279060605402]
We consider a federated learning (FL) system consisting of multiple clients and a server.
Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model.
arXiv Detail & Related papers (2023-05-08T23:29:24Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Consistent Diffusion Models: Mitigating Sampling Drift by Learning to be
Consistent [97.64313409741614]
We propose to enforce a emphconsistency property which states that predictions of the model on its own generated data are consistent across time.
We show that our novel training objective yields state-of-the-art results for conditional and unconditional generation in CIFAR-10 and baseline improvements in AFHQ and FFHQ.
arXiv Detail & Related papers (2023-02-17T18:45:04Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - How to Learn when Data Gradually Reacts to Your Model [10.074466859579571]
We propose a new algorithm, Stateful Performative Gradient Descent (Stateful PerfGD), for minimizing the performative loss even in the presence of these effects.
Our experiments confirm that Stateful PerfGD substantially outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2021-12-13T22:05:26Z) - Neural Pseudo-Label Optimism for the Bank Loan Problem [78.66533961716728]
We study a class of classification problems best exemplified by the emphbank loan problem.
In the case of linear models, this issue can be addressed by adding optimism directly into the model predictions.
We present Pseudo-Label Optimism (PLOT), a conceptually and computationally simple method for this setting applicable to Deep Neural Networks.
arXiv Detail & Related papers (2021-12-03T22:46:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.