Phase-Modulated Radar Waveform Classification Using Deep Networks
- URL: http://arxiv.org/abs/2102.07827v1
- Date: Mon, 15 Feb 2021 20:07:17 GMT
- Title: Phase-Modulated Radar Waveform Classification Using Deep Networks
- Authors: Michael Wharton, Anne M. Pavy, and Philip Schniter
- Abstract summary: We show that it is possible to reduce classification error from 18% to 0.14% on asynchronous waveforms from the SIDLE dataset.
Unlike past work, we furthermore demonstrate that accurate classification of multiple overlapping waveforms is also possible.
- Score: 12.980296933051509
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of classifying noisy, phase-modulated radar
waveforms. While traditionally this has been accomplished by applying classical
machine-learning algorithms on hand-crafted features, it has recently been
shown that better performance can be attained by training deep neural networks
(DNNs) to classify raw I/Q waveforms. However, existing DNNs assume
time-synchronized waveforms and do not exploit complex-valued signal structure,
and many aspects of the their DNN design and training are suboptimal. We
demonstrate that, with an improved DNN architecture and training procedure, it
is possible to reduce classification error from 18% to 0.14% on asynchronous
waveforms from the SIDLE dataset. Unlike past work, we furthermore demonstrate
that accurate classification of multiple overlapping waveforms is also
possible, by achieving 4.0% error with 4 asynchronous SIDLE waveforms.
Related papers
- Accelerating High-Fidelity Waveform Generation via Adversarial Flow Matching Optimization [37.35829410807451]
This paper introduces PeriodWave-Turbo, a high-fidelity and high-efficient waveform generation model via adversarial flow matching optimization.
It only requires 1,000 steps of fine-tuning to achieve state-of-the-art performance across various objective metrics.
By scaling up the backbone of PeriodWave from 29M to 70M parameters for improved generalization, PeriodWave-Turbo achieves unprecedented performance.
arXiv Detail & Related papers (2024-08-15T08:34:00Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Machine learning for phase-resolved reconstruction of nonlinear ocean
wave surface elevations from sparse remote sensing data [37.69303106863453]
We propose a novel approach for phase-resolved wave surface reconstruction using neural networks.
Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids.
arXiv Detail & Related papers (2023-05-18T12:30:26Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
This paper proposes the development of a railway axle condition monitoring system based on advanced 2D-Convolutional Neural Network (CNN) architectures.
The resultant system converts the railway axle vibration signals into time-frequency domain representations, i.e., spectrograms, and, thus, trains a two-dimensional CNN to classify them depending on their cracks.
arXiv Detail & Related papers (2022-11-15T15:04:06Z) - WaveFit: An Iterative and Non-autoregressive Neural Vocoder based on
Fixed-Point Iteration [47.07494621683752]
This study proposes a fast and high-quality neural vocoder called textitWaveFit.
WaveFit integrates the essence of GANs into a DDPM-like iterative framework based on fixed-point iteration.
Subjective listening tests showed no statistically significant differences in naturalness between human natural speech and those synthesized by WaveFit with five iterations.
arXiv Detail & Related papers (2022-10-03T15:45:05Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
The recently proposed physics-informed neural network (PINN) has achieved successful applications in solving a wide range of partial differential equations (PDEs)
In this paper, we solve the acoustic and visco-acoustic scattered-field wave equation in the frequency domain with PINN instead of the wave equation to remove source perturbation.
We show that PML and quadratic neurons improve the results as well as attenuation and discuss the reason for this improvement.
arXiv Detail & Related papers (2022-08-16T13:29:01Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
Spiking Neural Network (SNN) is a promising energy-efficient AI model when implemented on neuromorphic hardware.
It is a challenge to efficiently train SNNs due to their non-differentiability.
We propose the Differentiation on Spike Representation (DSR) method, which could achieve high performance.
arXiv Detail & Related papers (2022-05-01T12:44:49Z) - Learning Wave Propagation with Attention-Based Convolutional Recurrent
Autoencoder Net [0.0]
We present an end-to-end attention-based convolutional recurrent autoencoder (AB-CRAN) network for data-driven modeling of wave propagation phenomena.
We employ a denoising-based convolutional autoencoder from the full-order snapshots given by time-dependent hyperbolic partial differential equations for wave propagation.
The attention-based sequence-to-sequence network increases the time-horizon of prediction by five times compared to the plain RNN-LSTM.
arXiv Detail & Related papers (2022-01-17T20:51:59Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - AIN: Fast and Accurate Sequence Labeling with Approximate Inference
Network [75.44925576268052]
The linear-chain Conditional Random Field (CRF) model is one of the most widely-used neural sequence labeling approaches.
Exact probabilistic inference algorithms are typically applied in training and prediction stages of the CRF model.
We propose to employ a parallelizable approximate variational inference algorithm for the CRF model.
arXiv Detail & Related papers (2020-09-17T12:18:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.