Structured Graph Learning for Scalable Subspace Clustering: From
Single-view to Multi-view
- URL: http://arxiv.org/abs/2102.07943v1
- Date: Tue, 16 Feb 2021 03:46:11 GMT
- Title: Structured Graph Learning for Scalable Subspace Clustering: From
Single-view to Multi-view
- Authors: Zhao Kang, Zhiping Lin, Xiaofeng Zhu, Wenbo Xu
- Abstract summary: Graph-based subspace clustering methods have exhibited promising performance.
They still suffer some of these drawbacks: encounter the expensive time overhead, fail in exploring the explicit clusters, and cannot generalize to unseen data points.
We propose a scalable graph learning framework, seeking to address the above three challenges simultaneously.
- Score: 28.779909990410978
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph-based subspace clustering methods have exhibited promising performance.
However, they still suffer some of these drawbacks: encounter the expensive
time overhead, fail in exploring the explicit clusters, and cannot generalize
to unseen data points. In this work, we propose a scalable graph learning
framework, seeking to address the above three challenges simultaneously.
Specifically, it is based on the ideas of anchor points and bipartite graph.
Rather than building a $n\times n$ graph, where $n$ is the number of samples,
we construct a bipartite graph to depict the relationship between samples and
anchor points. Meanwhile, a connectivity constraint is employed to ensure that
the connected components indicate clusters directly. We further establish the
connection between our method and the K-means clustering. Moreover, a model to
process multi-view data is also proposed, which is linear scaled with respect
to $n$. Extensive experiments demonstrate the efficiency and effectiveness of
our approach with respect to many state-of-the-art clustering methods.
Related papers
- Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Efficient Multi-view Clustering via Unified and Discrete Bipartite Graph
Learning [15.617206773324952]
This paper presents an efficient multi-view clustering approach via unified and discrete bipartite graph learning (UDBGL)
An anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views.
The Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures.
arXiv Detail & Related papers (2022-09-09T08:51:01Z) - Geometry Contrastive Learning on Heterogeneous Graphs [50.58523799455101]
This paper proposes a novel self-supervised learning method, termed as Geometry Contrastive Learning (GCL)
GCL views a heterogeneous graph from Euclidean and hyperbolic perspective simultaneously, aiming to make a strong merger of the ability of modeling rich semantics and complex structures.
Extensive experiments on four benchmarks data sets show that the proposed approach outperforms the strong baselines.
arXiv Detail & Related papers (2022-06-25T03:54:53Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Fine-grained Graph Learning for Multi-view Subspace Clustering [2.4094285826152593]
We propose a fine-grained graph learning framework for multi-view subspace clustering (FGL-MSC)
The main challenge is how to optimize the fine-grained fusion weights while generating the learned graph that fits the clustering task.
Experiments on eight real-world datasets show that the proposed framework has comparable performance to the state-of-the-art methods.
arXiv Detail & Related papers (2022-01-12T18:00:29Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
We propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization.
Specifically, we construct a hidden and tractable large graph by anchor graph for each view.
We develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model.
arXiv Detail & Related papers (2021-06-29T13:10:56Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.