Training Stacked Denoising Autoencoders for Representation Learning
- URL: http://arxiv.org/abs/2102.08012v1
- Date: Tue, 16 Feb 2021 08:18:22 GMT
- Title: Training Stacked Denoising Autoencoders for Representation Learning
- Authors: Jason Liang, Keith Kelly
- Abstract summary: We implement stacked autoencoders, a class of neural networks that are capable of learning powerful representations of high dimensional data.
We describe gradient descent for unsupervised training of autoencoders, as well as a novel genetic algorithm based approach that makes use of gradient information.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We implement stacked denoising autoencoders, a class of neural networks that
are capable of learning powerful representations of high dimensional data. We
describe stochastic gradient descent for unsupervised training of autoencoders,
as well as a novel genetic algorithm based approach that makes use of gradient
information. We analyze the performance of both optimization algorithms and
also the representation learning ability of the autoencoder when it is trained
on standard image classification datasets.
Related papers
- Pivotal Auto-Encoder via Self-Normalizing ReLU [20.76999663290342]
We formalize single hidden layer sparse auto-encoders as a transform learning problem.
We propose an optimization problem that leads to a predictive model invariant to the noise level at test time.
Our experimental results demonstrate that the trained models yield a significant improvement in stability against varying types of noise.
arXiv Detail & Related papers (2024-06-23T09:06:52Z) - Denoising Diffusion Autoencoders are Unified Self-supervised Learners [58.194184241363175]
This paper shows that the networks in diffusion models, namely denoising diffusion autoencoders (DDAE), are unified self-supervised learners.
DDAE has already learned strongly linear-separable representations within its intermediate layers without auxiliary encoders.
Our diffusion-based approach achieves 95.9% and 50.0% linear evaluation accuracies on CIFAR-10 and Tiny-ImageNet.
arXiv Detail & Related papers (2023-03-17T04:20:47Z) - Fundamental Limits of Two-layer Autoencoders, and Achieving Them with
Gradient Methods [91.54785981649228]
This paper focuses on non-linear two-layer autoencoders trained in the challenging proportional regime.
Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods.
For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders.
arXiv Detail & Related papers (2022-12-27T12:37:34Z) - Correntropy-Based Logistic Regression with Automatic Relevance
Determination for Robust Sparse Brain Activity Decoding [18.327196310636864]
We introduce the correntropy learning framework into the automatic relevance determination based sparse classification model.
We evaluate it on a synthetic dataset, an electroencephalogram (EEG) dataset, and a functional magnetic resonance imaging (fMRI) dataset.
arXiv Detail & Related papers (2022-07-20T06:49:23Z) - The dynamics of representation learning in shallow, non-linear
autoencoders [3.1219977244201056]
We study the dynamics of feature learning in non-linear, shallow autoencoders.
An analysis of the long-time dynamics explains the failure of sigmoidal autoencoders to learn with tied weights.
We show that our equations accurately describe the generalisation dynamics of non-linear autoencoders on realistic datasets.
arXiv Detail & Related papers (2022-01-06T15:57:31Z) - Dynamic Neural Representational Decoders for High-Resolution Semantic
Segmentation [98.05643473345474]
We propose a novel decoder, termed dynamic neural representational decoder (NRD)
As each location on the encoder's output corresponds to a local patch of the semantic labels, in this work, we represent these local patches of labels with compact neural networks.
This neural representation enables our decoder to leverage the smoothness prior in the semantic label space, and thus makes our decoder more efficient.
arXiv Detail & Related papers (2021-07-30T04:50:56Z) - Implicit Greedy Rank Learning in Autoencoders via Overparameterized
Linear Networks [7.412225511828064]
Deep linear networks trained with gradient descent yield low rank solutions.
We show greedy learning of low-rank latent codes induced by a linear sub-network at the autoencoder bottleneck.
arXiv Detail & Related papers (2021-07-02T23:17:50Z) - Diffusion-Based Representation Learning [65.55681678004038]
We augment the denoising score matching framework to enable representation learning without any supervised signal.
In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective.
Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification.
arXiv Detail & Related papers (2021-05-29T09:26:02Z) - MetaSDF: Meta-learning Signed Distance Functions [85.81290552559817]
Generalizing across shapes with neural implicit representations amounts to learning priors over the respective function space.
We formalize learning of a shape space as a meta-learning problem and leverage gradient-based meta-learning algorithms to solve this task.
arXiv Detail & Related papers (2020-06-17T05:14:53Z) - Ensemble Wrapper Subsampling for Deep Modulation Classification [70.91089216571035]
Subsampling of received wireless signals is important for relaxing hardware requirements as well as the computational cost of signal processing algorithms.
We propose a subsampling technique to facilitate the use of deep learning for automatic modulation classification in wireless communication systems.
arXiv Detail & Related papers (2020-05-10T06:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.