Symmetrized persistency of Bell correlations for Dicke states and
GHZ-based mixtures: studying the limits of monogamy
- URL: http://arxiv.org/abs/2102.08141v1
- Date: Tue, 16 Feb 2021 13:26:36 GMT
- Title: Symmetrized persistency of Bell correlations for Dicke states and
GHZ-based mixtures: studying the limits of monogamy
- Authors: Marcin Wie\'sniak
- Abstract summary: We study persistency of Bell correlations of GHZ based mixtures and Dicke states.
For the former, we consider quantum communication complexity reduction scheme, and propose new Bell inequalities.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum correlations, in particular those, which enable to violate a Bell
inequality \cite{BELL}, open a way to advantage in certain communication tasks.
However, the main difficulty in harnessing quantumness is its fragility to,
e.g, noise or loss of particles. We study the persistency of Bell correlations
of GHZ based mixtures and Dicke states. For the former, we consider quantum
communication complexity reduction (QCCR) scheme, and propose new Bell
inequalities (BIs), which can be used in that scheme for higher persistency in
the limit of large number of particles $N$. In case of Dicke states, we show
that persistency can reach $0.482N$, significantly more than reported in
previous studies.
Related papers
- Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.
We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.
We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Probing many-body Bell correlation depth with superconducting qubits [17.3215930037341]
We report an experimental certification of genuine multipartite Bell correlations, which signal nonlocality in quantum many-body systems.
In particular, we employ energy as a Bell correlation witness and variationally decrease the energy of a many-body system across a hierarchy of thresholds.
Our results establish a viable approach for preparing and certifying multipartite Bell correlations, which provide a finer benchmark beyond entanglement for quantum devices.
arXiv Detail & Related papers (2024-06-25T18:00:00Z) - (Almost-)Quantum Bell Inequalities and Device-Independent Applications [3.7482527016282963]
We present families of (almost)quantum Bell inequalities and highlight three foundational and DI applications.
We derive quantum Bell inequalities that show a separation of the quantum boundary from certain portions of the no-signaling boundary of dimension up to 4k-8.
We provide the most precise characterization of the quantum boundary known so far.
arXiv Detail & Related papers (2023-09-12T15:13:02Z) - Entanglement and Bell inequalities violation in $H\to ZZ$ with anomalous coupling [44.99833362998488]
We discuss entanglement and violation of Bell-type inequalities for a system of two $Z$ bosons produced in Higgs decays.
We find that a $ZZ$ state is entangled and violates the inequality for all values of the pair (anomalous) coupling constant.
arXiv Detail & Related papers (2023-07-25T13:44:31Z) - Observing super-quantum correlations across the exceptional point in a
single, two-level trapped ion [48.7576911714538]
In two-level quantum systems - qubits - unitary dynamics theoretically limit these quantum correlations to $2qrt2$ or 1.5 respectively.
Here, using a dissipative, trapped $40$Ca$+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$.
These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics.
arXiv Detail & Related papers (2023-04-24T19:44:41Z) - Protecting quantum entanglement between error-corrected logical qubits [21.656211734079996]
We experimentally realize entangled logical qubits (ELQ) with a bosonic quantum module by encoding quantum information into spatially separated microwave modes.
The coherence time of the purified ELQ via error detection is improved by 45$%$ compared with the unprotected ELQ.
In addition, violation of the Bell inequality by logical qubits is demonstrated for the first time with the measured Bell signal B=2.250$pm$0.019 after purification.
arXiv Detail & Related papers (2023-02-25T08:57:28Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Facets of nonlocal correlation under non-Hermitian system [1.2730778556149887]
We study the quantum correlation of the bipartite system quantified by the entanglement, measurement-induced nonlocality (MIN) based on Hilbert-Schmidt norm, trace distance, and Bell inequality.
Our results show that the trace distance-based correlation is more robust against the nonunitary evolution compared to the other quantifiers.
arXiv Detail & Related papers (2021-08-25T04:31:45Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - Quantifying necessary quantum resources for nonlocality [0.0]
Nonlocality is one of the most important resources for quantum information protocols.
We quantify the minimal purity to achieve a certain Bell value for any Bell operator.
arXiv Detail & Related papers (2021-02-17T12:23:37Z) - All two-party facet Bell inequalities are violated by Almost Quantum
correlations [0.13844779265721088]
We show that every tight Bell inequality is violated by 'Almost Quantum' correlations.
We exploit connections between Bell correlations and the graph-theoretic Lov'asz-theta set, discovered by Cabello-Severini-Winter.
We derive novel (almost) quantum Bell inequalities, which may be of independent interest for self-testing applications.
arXiv Detail & Related papers (2020-04-16T14:15:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.