Submodular Maximization subject to a Knapsack Constraint: Combinatorial
Algorithms with Near-optimal Adaptive Complexity
- URL: http://arxiv.org/abs/2102.08327v2
- Date: Fri, 20 Oct 2023 08:22:31 GMT
- Title: Submodular Maximization subject to a Knapsack Constraint: Combinatorial
Algorithms with Near-optimal Adaptive Complexity
- Authors: Georgios Amanatidis, Federico Fusco, Philip Lazos, Stefano Leonardi,
Alberto Marchetti Spaccamela, Rebecca Reiffenh\"auser
- Abstract summary: We obtain the first constant approximation for non-monotone submodular algorithms with near-optimal $O(log n)$ adaptive complexity.
Our algorithm asks $tildeO(n2)$ value queries, but can be modified to run with only $tildeO(n)$ instead.
This is also the first approach with sublinear adaptive complexity for the problem and yields comparable to the state-of-the-art even for special cases of cardinality constraints or monotone objectives.
- Score: 13.416309759182635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Submodular maximization is a classic algorithmic problem with multiple
applications in data mining and machine learning; there, the growing need to
deal with massive instances motivates the design of algorithms balancing the
quality of the solution with applicability. For the latter, an important
measure is the adaptive complexity, which captures the number of sequential
rounds of parallel computation needed by an algorithm to terminate. In this
work we obtain the first constant factor approximation algorithm for
non-monotone submodular maximization subject to a knapsack constraint with
near-optimal $O(\log n)$ adaptive complexity. Low adaptivity by itself,
however, is not enough: a crucial feature to account for is represented by the
total number of function evaluations (or value queries). Our algorithm asks
$\tilde{O}(n^2)$ value queries, but can be modified to run with only
$\tilde{O}(n)$ instead, while retaining a low adaptive complexity of
$O(\log^2n)$. Besides the above improvement in adaptivity, this is also the
first combinatorial approach with sublinear adaptive complexity for the problem
and yields algorithms comparable to the state-of-the-art even for the special
cases of cardinality constraints or monotone objectives.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Improved Parallel Algorithm for Non-Monotone Submodular Maximization under Knapsack Constraint [0.0]
This work proposes an efficient parallel algorithm for non-monomodular size under a knapsack constraint.
Our algorithm improves the existing parallel one from $8+epsilon$ to $7+epsilon$ with $O(log n)$ adaptive complexity.
arXiv Detail & Related papers (2024-09-06T17:17:52Z) - Practical Parallel Algorithms for Non-Monotone Submodular Maximization [20.13836086815112]
Submodular has found extensive applications in various domains within the field of artificial intelligence.
One of the parallelizability of a submodular algorithm is its adaptive complexity, which indicates the number of rounds where a number of queries to the objective function can be executed in parallel.
We propose the first algorithm with both provable approximation ratio and sub adaptive complexity for the problem of non-monotone submodepsular subject to a $k$-system.
arXiv Detail & Related papers (2023-08-21T11:48:34Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
We exploit between first-order algorithms for constrained optimization and non-smooth systems to design a new class of accelerated first-order algorithms.
An important property of these algorithms is that constraints are expressed in terms of velocities instead of sparse variables.
arXiv Detail & Related papers (2023-02-01T08:50:48Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
We propose a novel method named Multi-block-probe Variance Reduced (MSVR) to alleviate the complexity of compositional problems.
Our results improve upon prior ones in several aspects, including the order of sample complexities and dependence on strongity.
arXiv Detail & Related papers (2022-07-18T12:03:26Z) - Best of Both Worlds: Practical and Theoretically Optimal Submodular Maximization in Parallel [17.462968952951883]
Main algorithm is assembled from two components which may be of independent interest.
A variant of LINEARSEQ is shown to have adaptive complexity of $O(log(n))$ smaller than that of any previous algorithm in the literature.
arXiv Detail & Related papers (2021-11-15T17:10:40Z) - Minimax Optimization with Smooth Algorithmic Adversaries [59.47122537182611]
We propose a new algorithm for the min-player against smooth algorithms deployed by an adversary.
Our algorithm is guaranteed to make monotonic progress having no limit cycles, and to find an appropriate number of gradient ascents.
arXiv Detail & Related papers (2021-06-02T22:03:36Z) - Adaptive Sampling for Fast Constrained Maximization of Submodular
Function [8.619758302080891]
We develop an algorithm with poly-logarithmic adaptivity for non-monotone submodular under general side constraints.
Our algorithm is suitable to maximize a non-monotone submodular function under a $p$-system side constraint.
arXiv Detail & Related papers (2021-02-12T12:38:03Z) - Online Model Selection for Reinforcement Learning with Function
Approximation [50.008542459050155]
We present a meta-algorithm that adapts to the optimal complexity with $tildeO(L5/6 T2/3)$ regret.
We also show that the meta-algorithm automatically admits significantly improved instance-dependent regret bounds.
arXiv Detail & Related papers (2020-11-19T10:00:54Z) - Practical and Parallelizable Algorithms for Non-Monotone Submodular
Maximization with Size Constraint [20.104148319012854]
We present and parallelizable for a submodular function, not necessarily a monotone, with respect to a size constraint.
We improve the best approximation factor achieved by an algorithm that has optimal adaptivity and nearly optimal complexity query to $0.193 - varepsilon$.
arXiv Detail & Related papers (2020-09-03T22:43:55Z) - A Two-Timescale Framework for Bilevel Optimization: Complexity Analysis
and Application to Actor-Critic [142.1492359556374]
Bilevel optimization is a class of problems which exhibit a two-level structure.
We propose a two-timescale approximation (TTSA) algorithm for tackling such a bilevel problem.
We show that a two-timescale natural actor-critic policy optimization algorithm can be viewed as a special case of our TTSA framework.
arXiv Detail & Related papers (2020-07-10T05:20:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.