ShaRF: Shape-conditioned Radiance Fields from a Single View
- URL: http://arxiv.org/abs/2102.08860v1
- Date: Wed, 17 Feb 2021 16:40:28 GMT
- Title: ShaRF: Shape-conditioned Radiance Fields from a Single View
- Authors: Konstantinos Rematas, Ricardo Martin-Brualla, Vittorio Ferrari
- Abstract summary: We present a method for estimating neural scenes representations of objects given only a single image.
The core of our method is the estimation of a geometric scaffold for the object.
We demonstrate in several experiments the effectiveness of our approach in both synthetic and real images.
- Score: 54.39347002226309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method for estimating neural scenes representations of objects
given only a single image. The core of our method is the estimation of a
geometric scaffold for the object and its use as a guide for the reconstruction
of the underlying radiance field. Our formulation is based on a generative
process that first maps a latent code to a voxelized shape, and then renders it
to an image, with the object appearance being controlled by a second latent
code. During inference, we optimize both the latent codes and the networks to
fit a test image of a new object. The explicit disentanglement of shape and
appearance allows our model to be fine-tuned given a single image. We can then
render new views in a geometrically consistent manner and they represent
faithfully the input object. Additionally, our method is able to generalize to
images outside of the training domain (more realistic renderings and even real
photographs). Finally, the inferred geometric scaffold is itself an accurate
estimate of the object's 3D shape. We demonstrate in several experiments the
effectiveness of our approach in both synthetic and real images.
Related papers
- Shape, Pose, and Appearance from a Single Image via Bootstrapped
Radiance Field Inversion [54.151979979158085]
We introduce a principled end-to-end reconstruction framework for natural images, where accurate ground-truth poses are not available.
We leverage an unconditional 3D-aware generator, to which we apply a hybrid inversion scheme where a model produces a first guess of the solution.
Our framework can de-render an image in as few as 10 steps, enabling its use in practical scenarios.
arXiv Detail & Related papers (2022-11-21T17:42:42Z) - Generative Deformable Radiance Fields for Disentangled Image Synthesis
of Topology-Varying Objects [52.46838926521572]
3D-aware generative models have demonstrated their superb performance to generate 3D neural radiance fields (NeRF) from a collection of monocular 2D images.
We propose a generative model for synthesizing radiance fields of topology-varying objects with disentangled shape and appearance variations.
arXiv Detail & Related papers (2022-09-09T08:44:06Z) - ShAPO: Implicit Representations for Multi-Object Shape, Appearance, and
Pose Optimization [40.36229450208817]
We present ShAPO, a method for joint multi-object detection, 3D textured reconstruction, 6D object pose and size estimation.
Key to ShAPO is a single-shot pipeline to regress shape, appearance and pose latent codes along with the masks of each object instance.
Our method significantly out-performs all baselines on the NOCS dataset with an 8% absolute improvement in mAP for 6D pose estimation.
arXiv Detail & Related papers (2022-07-27T17:59:31Z) - Self-Supervised Image Representation Learning with Geometric Set
Consistency [50.12720780102395]
We propose a method for self-supervised image representation learning under the guidance of 3D geometric consistency.
Specifically, we introduce 3D geometric consistency into a contrastive learning framework to enforce the feature consistency within image views.
arXiv Detail & Related papers (2022-03-29T08:57:33Z) - LOLNeRF: Learn from One Look [22.771493686755544]
We present a method for learning a generative 3D model based on neural radiance fields.
We show that, unlike existing methods, one does not need multi-view data to achieve this goal.
arXiv Detail & Related papers (2021-11-19T01:20:01Z) - From Points to Multi-Object 3D Reconstruction [71.17445805257196]
We propose a method to detect and reconstruct multiple 3D objects from a single RGB image.
A keypoint detector localizes objects as center points and directly predicts all object properties, including 9-DoF bounding boxes and 3D shapes.
The presented approach performs lightweight reconstruction in a single-stage, it is real-time capable, fully differentiable and end-to-end trainable.
arXiv Detail & Related papers (2020-12-21T18:52:21Z) - A Divide et Impera Approach for 3D Shape Reconstruction from Multiple
Views [49.03830902235915]
Estimating the 3D shape of an object from a single or multiple images has gained popularity thanks to the recent breakthroughs powered by deep learning.
This paper proposes to rely on viewpoint variant reconstructions by merging the visible information from the given views.
To validate the proposed method, we perform a comprehensive evaluation on the ShapeNet reference benchmark in terms of relative pose estimation and 3D shape reconstruction.
arXiv Detail & Related papers (2020-11-17T09:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.