A Graph Neural Network to Model User Comfort in Robot Navigation
- URL: http://arxiv.org/abs/2102.08863v1
- Date: Wed, 17 Feb 2021 16:44:52 GMT
- Title: A Graph Neural Network to Model User Comfort in Robot Navigation
- Authors: Pilar Bachiller and Daniel Rodriguez-Criado and Ronit R. Jorvekar and
Pablo Bustos and Diego R. Faria and Luis J. Manso
- Abstract summary: This paper leverages Graph Neural Networks to model robot disruption considering the movement of the humans and the robot.
The model trained close-to-human performance in the dataset.
- Score: 1.6751551703600527
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Autonomous navigation is a key skill for assistive and service robots. To be
successful, robots have to minimise the disruption caused to humans while
moving. This implies predicting how people will move and complying with social
conventions. Avoiding disrupting personal spaces, people's paths and
interactions are examples of these social conventions. This paper leverages
Graph Neural Networks to model robot disruption considering the movement of the
humans and the robot so that the model built can be used by path planning
algorithms. Along with the model, this paper presents an evolution of the
dataset SocNav1 which considers the movement of the robot and the humans, and
an updated scenario-to-graph transformation which is tested using different
Graph Neural Network blocks. The model trained achieves close-to-human
performance in the dataset. In addition to its accuracy, the main advantage of
the approach is its scalability in terms of the number of social factors that
can be considered in comparison with handcrafted models.
Related papers
- InteRACT: Transformer Models for Human Intent Prediction Conditioned on Robot Actions [7.574421886354134]
InteRACT architecture pre-trains a conditional intent prediction model on large human-human datasets and fine-tunes on a small human-robot dataset.
We evaluate on a set of real-world collaborative human-robot manipulation tasks and show that our conditional model improves over various marginal baselines.
arXiv Detail & Related papers (2023-11-21T19:15:17Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
This paper introduces a novel deep-learning approach for human-to-robot motion.
Our method does not require paired human-to-robot data, which facilitates its translation to new robots.
Our model outperforms existing works regarding human-to-robot similarity in terms of efficiency and precision.
arXiv Detail & Related papers (2023-09-11T08:55:04Z) - SACSoN: Scalable Autonomous Control for Social Navigation [62.59274275261392]
We develop methods for training policies for socially unobtrusive navigation.
By minimizing this counterfactual perturbation, we can induce robots to behave in ways that do not alter the natural behavior of humans in the shared space.
We collect a large dataset where an indoor mobile robot interacts with human bystanders.
arXiv Detail & Related papers (2023-06-02T19:07:52Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
Planning motions that take human comfort into account is not a part of the human-robot handover process.
We propose to generate smooth motions via an efficient model-predictive control framework.
We conduct human-to-robot handover experiments on a diverse set of objects with several users.
arXiv Detail & Related papers (2022-03-31T23:08:20Z) - Socially Compliant Navigation Dataset (SCAND): A Large-Scale Dataset of
Demonstrations for Social Navigation [92.66286342108934]
Social navigation is the capability of an autonomous agent, such as a robot, to navigate in a'socially compliant' manner in the presence of other intelligent agents such as humans.
Our dataset contains 8.7 hours, 138 trajectories, 25 miles of socially compliant, human teleoperated driving demonstrations.
arXiv Detail & Related papers (2022-03-28T19:09:11Z) - Dynamically Switching Human Prediction Models for Efficient Planning [32.180808286226075]
We give the robot access to a suite of human models and enable it to assess the performance-computation trade-off online.
Our experiments in a driving simulator showcase how the robot can achieve performance comparable to always using the best human model.
arXiv Detail & Related papers (2021-03-13T23:48:09Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
We propose the use of a Convolution Neural Network (CNN) to segment the robot hand from an image in an egocentric view.
We fine-tuned the Mask-RCNN network for the specific task of segmenting the hand of the humanoid robot Vizzy.
arXiv Detail & Related papers (2021-02-09T10:34:32Z) - Human Grasp Classification for Reactive Human-to-Robot Handovers [50.91803283297065]
We propose an approach for human-to-robot handovers in which the robot meets the human halfway.
We collect a human grasp dataset which covers typical ways of holding objects with various hand shapes and poses.
We present a planning and execution approach that takes the object from the human hand according to the detected grasp and hand position.
arXiv Detail & Related papers (2020-03-12T19:58:03Z) - Hyperparameters optimization for Deep Learning based emotion prediction
for Human Robot Interaction [0.2549905572365809]
We have proposed an Inception module based Convolutional Neural Network Architecture.
The model is implemented in a humanoid robot, NAO in real time and robustness of the model is evaluated.
arXiv Detail & Related papers (2020-01-12T05:25:02Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
Learning predictive models from interaction with the world allows an agent, such as a robot, to learn about how the world works.
However, learning a model that captures the dynamics of complex skills represents a major challenge.
We propose a method to augment the training set with observational data of other agents, such as humans.
arXiv Detail & Related papers (2019-12-30T01:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.