Weakly Supervised Learning of Rigid 3D Scene Flow
- URL: http://arxiv.org/abs/2102.08945v1
- Date: Wed, 17 Feb 2021 18:58:02 GMT
- Title: Weakly Supervised Learning of Rigid 3D Scene Flow
- Authors: Zan Gojcic, Or Litany, Andreas Wieser, Leonidas J. Guibas, Tolga
Birdal
- Abstract summary: We propose a data-driven scene flow estimation algorithm exploiting the observation that many 3D scenes can be explained by a collection of agents moving as rigid bodies.
We showcase the effectiveness and generalization capacity of our method on four different autonomous driving datasets.
- Score: 81.37165332656612
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a data-driven scene flow estimation algorithm exploiting the
observation that many 3D scenes can be explained by a collection of agents
moving as rigid bodies. At the core of our method lies a deep architecture able
to reason at the \textbf{object-level} by considering 3D scene flow in
conjunction with other 3D tasks. This object level abstraction, enables us to
relax the requirement for dense scene flow supervision with simpler binary
background segmentation mask and ego-motion annotations. Our mild supervision
requirements make our method well suited for recently released massive data
collections for autonomous driving, which do not contain dense scene flow
annotations. As output, our model provides low-level cues like pointwise flow
and higher-level cues such as holistic scene understanding at the level of
rigid objects. We further propose a test-time optimization refining the
predicted rigid scene flow. We showcase the effectiveness and generalization
capacity of our method on four different autonomous driving datasets. We
release our source code and pre-trained models under
\url{github.com/zgojcic/Rigid3DSceneFlow}.
Related papers
- MonST3R: A Simple Approach for Estimating Geometry in the Presence of Motion [118.74385965694694]
We present Motion DUSt3R (MonST3R), a novel geometry-first approach that directly estimates per-timestep geometry from dynamic scenes.
By simply estimating a pointmap for each timestep, we can effectively adapt DUST3R's representation, previously only used for static scenes, to dynamic scenes.
We show that by posing the problem as a fine-tuning task, identifying several suitable datasets, and strategically training the model on this limited data, we can surprisingly enable the model to handle dynamics.
arXiv Detail & Related papers (2024-10-04T18:00:07Z) - Let Occ Flow: Self-Supervised 3D Occupancy Flow Prediction [14.866463843514156]
Let Occ Flow is the first self-supervised work for joint 3D occupancy and occupancy flow prediction using only camera inputs.
Our approach incorporates a novel attention-based temporal fusion module to capture dynamic object dependencies.
Our method extends differentiable rendering to 3D volumetric flow fields.
arXiv Detail & Related papers (2024-07-10T12:20:11Z) - SeFlow: A Self-Supervised Scene Flow Method in Autonomous Driving [18.88208422580103]
Scene flow estimation predicts the 3D motion at each point in successive LiDAR scans.
Current state-of-the-art methods require annotated data to train scene flow networks.
We propose SeFlow, a self-supervised method that integrates efficient dynamic classification into a learning-based scene flow pipeline.
arXiv Detail & Related papers (2024-07-01T18:22:54Z) - Self-Supervised 3D Scene Flow Estimation and Motion Prediction using
Local Rigidity Prior [100.98123802027847]
We investigate self-supervised 3D scene flow estimation and class-agnostic motion prediction on point clouds.
We generate pseudo scene flow labels for self-supervised learning through piecewise rigid motion estimation.
Our method achieves new state-of-the-art performance in self-supervised scene flow learning.
arXiv Detail & Related papers (2023-10-17T14:06:55Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
Self-supervised monocular depth estimation has shown impressive results in static scenes.
It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions.
We introduce an external pretrained monocular depth estimation model for generating single-image depth prior.
Our model can predict sharp and accurate depth maps, even when training from monocular videos of highly-dynamic scenes.
arXiv Detail & Related papers (2022-11-07T16:17:47Z) - 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone [10.341296683155973]
We propose using a self-supervised training strategy to learn a general point cloud backbone model for downstream 3D vision tasks.
Our main contribution leverages learned flow and motion representations and combines a self-supervised backbone with a 3D detection head.
Experiments on KITTI and nuScenes benchmarks show that the proposed self-supervised pre-training increases 3D detection performance significantly.
arXiv Detail & Related papers (2022-05-02T07:53:29Z) - Learning to Segment Rigid Motions from Two Frames [72.14906744113125]
We propose a modular network, motivated by a geometric analysis of what independent object motions can be recovered from an egomotion field.
It takes two consecutive frames as input and predicts segmentation masks for the background and multiple rigidly moving objects, which are then parameterized by 3D rigid transformations.
Our method achieves state-of-the-art performance for rigid motion segmentation on KITTI and Sintel.
arXiv Detail & Related papers (2021-01-11T04:20:30Z) - Do not trust the neighbors! Adversarial Metric Learning for
Self-Supervised Scene Flow Estimation [0.0]
Scene flow is the task of estimating 3D motion vectors to individual points of a dynamic 3D scene.
We propose a 3D scene flow benchmark and a novel self-supervised setup for training flow models.
We find that our setup is able to keep motion coherence and preserve local geometries, which many self-supervised baselines fail to grasp.
arXiv Detail & Related papers (2020-11-01T17:41:32Z) - Adversarial Self-Supervised Scene Flow Estimation [15.278302535191866]
This work proposes a metric learning approach for self-supervised scene flow estimation.
We outline a benchmark for self-supervised scene flow estimation: the Scene Flow Sandbox.
arXiv Detail & Related papers (2020-11-01T16:37:37Z) - 3D Sketch-aware Semantic Scene Completion via Semi-supervised Structure
Prior [50.73148041205675]
The goal of the Semantic Scene Completion (SSC) task is to simultaneously predict a completed 3D voxel representation of volumetric occupancy and semantic labels of objects in the scene from a single-view observation.
We propose to devise a new geometry-based strategy to embed depth information with low-resolution voxel representation.
Our proposed geometric embedding works better than the depth feature learning from habitual SSC frameworks.
arXiv Detail & Related papers (2020-03-31T09:33:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.