Causal Inference Q-Network: Toward Resilient Reinforcement Learning
- URL: http://arxiv.org/abs/2102.09677v1
- Date: Thu, 18 Feb 2021 23:50:20 GMT
- Title: Causal Inference Q-Network: Toward Resilient Reinforcement Learning
- Authors: Chao-Han Huck Yang, I-Te Danny Hung, Yi Ouyang, Pin-Yu Chen
- Abstract summary: We consider a resilient DRL framework with observational interferences.
Under this framework, we propose a causal inference based DRL algorithm called causal inference Q-network (CIQ)
Our experimental results show that the proposed CIQ method could achieve higher performance and more resilience against observational interferences.
- Score: 57.96312207429202
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep reinforcement learning (DRL) has demonstrated impressive performance in
various gaming simulators and real-world applications. In practice, however, a
DRL agent may receive faulty observation by abrupt interferences such as
black-out, frozen-screen, and adversarial perturbation. How to design a
resilient DRL algorithm against these rare but mission-critical and
safety-crucial scenarios is an important yet challenging task. In this paper,
we consider a resilient DRL framework with observational interferences. Under
this framework, we discuss the importance of the causal relation and propose a
causal inference based DRL algorithm called causal inference Q-network (CIQ).
We evaluate the performance of CIQ in several benchmark DRL environments with
different types of interferences. Our experimental results show that the
proposed CIQ method could achieve higher performance and more resilience
against observational interferences.
Related papers
- CIER: A Novel Experience Replay Approach with Causal Inference in Deep Reinforcement Learning [11.13226491866178]
We propose a novel approach to segment time series into meaningful subsequences and represent the time series based on these subsequences.
The subsequences are employed for causal inference to identify fundamental causal factors that significantly impact training outcomes.
Several experiments demonstrate the feasibility of our approach in common environments, confirming its ability to enhance the effectiveness of DRL training and impart a certain level of explainability to the training process.
arXiv Detail & Related papers (2024-05-14T07:23:10Z) - Zero-Sum Positional Differential Games as a Framework for Robust Reinforcement Learning: Deep Q-Learning Approach [2.3020018305241337]
This paper is the first to propose considering the RRL problems within the positional differential game theory.
Namely, we prove that under Isaacs's condition, the same Q-function can be utilized as an approximate solution of both minimax and maximin Bellman equations.
We present the Isaacs Deep Q-Network algorithms and demonstrate their superiority compared to other baseline RRL and Multi-Agent RL algorithms in various environments.
arXiv Detail & Related papers (2024-05-03T12:21:43Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - Improve Robustness of Reinforcement Learning against Observation
Perturbations via $l_\infty$ Lipschitz Policy Networks [8.39061976254379]
Deep Reinforcement Learning (DRL) has achieved remarkable advances in sequential decision tasks.
Recent works have revealed that DRL agents are susceptible to slight perturbations in observations.
We propose a novel robust reinforcement learning method called SortRL, which improves the robustness of DRL policies against observation perturbations.
arXiv Detail & Related papers (2023-12-14T08:57:22Z) - Causal Representation Learning Made Identifiable by Grouping of Observational Variables [8.157856010838382]
Causal Representation Learning aims to learn a causal model for hidden features in a data-driven manner.
Here, we show identifiability based on novel, weak constraints.
We also propose a novel self-supervised estimation framework consistent with the model.
arXiv Detail & Related papers (2023-10-24T10:38:02Z) - Seeing is not Believing: Robust Reinforcement Learning against Spurious
Correlation [57.351098530477124]
We consider one critical type of robustness against spurious correlation, where different portions of the state do not have correlations induced by unobserved confounders.
A model that learns such useless or even harmful correlation could catastrophically fail when the confounder in the test case deviates from the training one.
Existing robust algorithms that assume simple and unstructured uncertainty sets are therefore inadequate to address this challenge.
arXiv Detail & Related papers (2023-07-15T23:53:37Z) - A Survey on Causal Reinforcement Learning [41.645270300009436]
We offer a review of Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL.
In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not.
We analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR)
arXiv Detail & Related papers (2023-02-10T12:25:08Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
We propose falSe COrrelation REduction (SCORE) for offline RL, a practically effective and theoretically provable algorithm.
We empirically show that SCORE achieves the SoTA performance with 3.1x acceleration on various tasks in a standard benchmark (D4RL)
arXiv Detail & Related papers (2021-10-24T15:34:03Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
A deep reinforcement learning (DRL) agent observes its states through observations, which may contain natural measurement errors or adversarial noises.
Since the observations deviate from the true states, they can mislead the agent into making suboptimal actions.
We show that naively applying existing techniques on improving robustness for classification tasks, like adversarial training, is ineffective for many RL tasks.
arXiv Detail & Related papers (2020-03-19T17:59:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.