Camera Calibration with Pose Guidance
- URL: http://arxiv.org/abs/2102.10202v1
- Date: Fri, 19 Feb 2021 23:23:54 GMT
- Title: Camera Calibration with Pose Guidance
- Authors: Yuzhuo Ren, Feng Hu
- Abstract summary: Camera calibration plays a critical role in various computer vision tasks such as autonomous driving or augmented reality.
We propose a calibration system called with Pose Guidance to improve calibration accuracy, reduce calibration variance among different users or different trials of the same person.
- Score: 1.0152838128195465
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camera calibration plays a critical role in various computer vision tasks
such as autonomous driving or augmented reality. Widely used camera calibration
tools utilize plane pattern based methodology, such as using a chessboard or
AprilTag board, user's calibration expertise level significantly affects
calibration accuracy and consistency when without clear instruction.
Furthermore, calibration is a recurring task that has to be performed each time
the camera is changed or moved. It's also a great burden to calibrate huge
amounts of cameras such as Driver Monitoring System (DMS) cameras in a
production line with millions of vehicles. To resolve above issues, we propose
a calibration system called Calibration with Pose Guidance to improve
calibration accuracy, reduce calibration variance among different users or
different trials of the same person. Experiment result shows that our proposed
method achieves more accurate and consistent calibration than traditional
calibration tools.
Related papers
- Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Self-Supervised Online Camera Calibration for Automated Driving and
Parking Applications [1.6921067573076216]
This paper proposes a framework to learn intrinsic and extrinsic calibration of the camera in real time.
The framework is self-supervised and doesn't require any labelling or supervision to learn the calibration parameters.
arXiv Detail & Related papers (2023-08-16T16:49:50Z) - EasyHeC: Accurate and Automatic Hand-eye Calibration via Differentiable
Rendering and Space Exploration [49.90228618894857]
We introduce a new approach to hand-eye calibration called EasyHeC, which is markerless, white-box, and delivers superior accuracy and robustness.
We propose to use two key technologies: differentiable rendering-based camera pose optimization and consistency-based joint space exploration.
Our evaluation demonstrates superior performance in synthetic and real-world datasets.
arXiv Detail & Related papers (2023-05-02T03:49:54Z) - Online Camera-to-ground Calibration for Autonomous Driving [26.357898919134833]
We propose an online monocular camera-to-ground calibration solution that does not utilize any specific targets while driving.
We provide metrics to quantify calibration performance and stopping criteria to report/broadcast our satisfying calibration results.
arXiv Detail & Related papers (2023-03-30T04:01:48Z) - Deep Learning for Camera Calibration and Beyond: A Survey [100.75060862015945]
Camera calibration involves estimating camera parameters to infer geometric features from captured sequences.
Recent efforts show that learning-based solutions have the potential to be used in place of the repeatability works of manual calibrations.
arXiv Detail & Related papers (2023-03-19T04:00:05Z) - Online Marker-free Extrinsic Camera Calibration using Person Keypoint
Detections [25.393382192511716]
We propose a marker-free online method for the extrinsic calibration of multiple smart edge sensors.
Our method assumes the intrinsic camera parameters to be known and requires priming with a rough initial estimate of the camera poses.
We show that the calibration with our method achieves lower reprojection errors compared to a reference calibration generated by an offline method.
arXiv Detail & Related papers (2022-09-15T15:54:21Z) - Dynamic Event Camera Calibration [27.852239869987947]
We present the first dynamic event camera calibration algorithm.
It calibrates directly from events captured during relative motion between camera and calibration pattern.
As demonstrated through our results, the obtained calibration method is highly convenient and reliably calibrates from data sequences spanning less than 10 seconds.
arXiv Detail & Related papers (2021-07-14T14:52:58Z) - How to Calibrate Your Event Camera [58.80418612800161]
We propose a generic event camera calibration framework using image reconstruction.
We show that neural-network-based image reconstruction is well suited for the task of intrinsic and extrinsic calibration of event cameras.
arXiv Detail & Related papers (2021-05-26T07:06:58Z) - Localized Calibration: Metrics and Recalibration [133.07044916594361]
We propose a fine-grained calibration metric that spans the gap between fully global and fully individualized calibration.
We then introduce a localized recalibration method, LoRe, that improves the LCE better than existing recalibration methods.
arXiv Detail & Related papers (2021-02-22T07:22:12Z) - Zero-Shot Calibration of Fisheye Cameras [0.010956300138340428]
The proposed method estimates camera parameters from the horizontal and vertical field of view information of the camera without any image acquisition.
The method is particularly useful for wide-angle or fisheye cameras that have large image distortion.
arXiv Detail & Related papers (2020-11-30T08:10:24Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
We show that deep-ensembles do not necessarily lead to improved calibration properties.
We show that standard ensembling methods, when used in conjunction with modern techniques such as mixup regularization, can lead to less calibrated models.
This text examines the interplay between three of the most simple and commonly used approaches to leverage deep learning when data is scarce.
arXiv Detail & Related papers (2020-07-17T07:32:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.