Decomposition of Clifford Gates
- URL: http://arxiv.org/abs/2102.11380v1
- Date: Fri, 5 Feb 2021 10:32:09 GMT
- Title: Decomposition of Clifford Gates
- Authors: Tefjol Pllaha, Kalle Volanto, Olav Tirkkonen
- Abstract summary: We provide a fast algorithm that decomposes any Clifford gate as a $textitminimal$ product of Clifford transvections.
The algorithm can be directly used for finding all Pauli matrices that commute with any given Clifford gate.
- Score: 3.7900158137749322
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In fault-tolerant quantum computation and quantum error-correction one is
interested on Pauli matrices that commute with a circuit/unitary. We provide a
fast algorithm that decomposes any Clifford gate as a $\textit{minimal}$
product of Clifford transvections. The algorithm can be directly used for
finding all Pauli matrices that commute with any given Clifford gate. To
achieve this goal, we exploit the structure of the symplectic group with a
novel graphical approach.
Related papers
- Clifford Dressed Time-Dependent Variational Principle [39.58317527488534]
We propose an enhanced Time-Dependent Variational Principle (TDVP) algorithm for Matrix Product States (MPS)
By leveraging the Clifford group, we introduce a Clifford dressed single-site 1-TDVP scheme.
We validate the new algorithm numerically using various quantum many-body models, including both integrable and non-integrable systems.
arXiv Detail & Related papers (2024-07-01T18:04:25Z) - Low-depth Clifford circuits approximately solve MaxCut [44.99833362998488]
We introduce a quantum-inspired approximation algorithm for MaxCut based on low-depth Clifford circuits.
Our algorithm finds an approximate solution of MaxCut on an $N$-vertex graph by building a depth $O(N)$ Clifford circuit.
arXiv Detail & Related papers (2023-10-23T15:20:03Z) - A simple asymptotically optimal Clifford circuit compilation algorithm [0.0]
We present an algorithm that decomposes any $n$-qubit Clifford operator into a circuit consisting of three subcircuits.
As with other derivationally optimal Clifford compilation algorithms, the resulting circuit contains $O(n2/log n)$ two-qubit gates.
arXiv Detail & Related papers (2023-10-16T23:27:59Z) - Simulation of IBM's kicked Ising experiment with Projected Entangled
Pair Operator [71.10376783074766]
We perform classical simulations of the 127-qubit kicked Ising model, which was recently emulated using a quantum circuit with error mitigation.
Our approach is based on the projected entangled pair operator (PEPO) in the Heisenberg picture.
We develop a Clifford expansion theory to compute exact expectation values and use them to evaluate algorithms.
arXiv Detail & Related papers (2023-08-06T10:24:23Z) - Homotopy Classification of loops of Clifford unitaries [0.0]
We study Clifford quantum circuits acting on $mathsfd$-dimensional lattices of prime $p$-dimensional qudits.
We calculate homotopy classes of such loops for any odd $p$ and $mathsfd=0,1,2,3$, and $4$.
We observe that the homotopy classes of loops of Clifford circuits in $(mathsfd+1)$-dimensions coincide with the quotient of the group of Clifford Quantum Cellular Automata modulo shallow circuits and lattice translations in $mathsfd$-dimensions
arXiv Detail & Related papers (2023-06-16T15:31:34Z) - Learning efficient decoders for quasi-chaotic quantum scramblers [3.823356975862005]
We show that one can retrieve the scrambled information even without any previous knowledge of the scrambler.
A classical decoder can retrieve with fidelity one all the information scrambled by a random unitary.
Results show that one can learn the salient properties of quantum unitaries in a classical form.
arXiv Detail & Related papers (2022-12-21T20:19:53Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Synthesis of Quantum Circuits with an Island Genetic Algorithm [44.99833362998488]
Given a unitary matrix that performs certain operation, obtaining the equivalent quantum circuit is a non-trivial task.
Three problems are explored: the coin for the quantum walker, the Toffoli gate and the Fredkin gate.
The algorithm proposed proved to be efficient in decomposition of quantum circuits, and as a generic approach, it is limited only by the available computational power.
arXiv Detail & Related papers (2021-06-06T13:15:25Z) - A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz [68.8204255655161]
We describe a compilation strategy for Variational Quantum Eigensolver (VQE) algorithms.
We use the Unitary Coupled Cluster (UCC) ansatz to reduce circuit depth and gate count.
arXiv Detail & Related papers (2020-07-20T22:26:16Z) - Hadamard-free circuits expose the structure of the Clifford group [9.480212602202517]
The Clifford group plays a central role in quantum randomized benchmarking, quantum tomography, and error correction protocols.
We show that any Clifford operator can be uniquely written in the canonical form $F_HSF$.
A surprising connection is highlighted between random uniform Clifford operators and the Mallows distribution on the symmetric group.
arXiv Detail & Related papers (2020-03-20T17:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.