Automated Quality Assessment of Cognitive Behavioral Therapy Sessions
Through Highly Contextualized Language Representations
- URL: http://arxiv.org/abs/2102.11573v1
- Date: Tue, 23 Feb 2021 09:22:29 GMT
- Title: Automated Quality Assessment of Cognitive Behavioral Therapy Sessions
Through Highly Contextualized Language Representations
- Authors: Nikolaos Flemotomos, Victor R. Martinez, Zhuohao Chen, Torrey A.
Creed, David C. Atkins, Shrikanth Narayanan
- Abstract summary: A BERT-based model is proposed for automatic behavioral scoring of a specific type of psychotherapy, called Cognitive Behavioral Therapy (CBT)
The model is trained in a multi-task manner in order to achieve higher interpretability.
BERT-based representations are further augmented with available therapy metadata, providing relevant non-linguistic context and leading to consistent performance improvements.
- Score: 34.670548892766625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During a psychotherapy session, the counselor typically adopts techniques
which are codified along specific dimensions (e.g., 'displays warmth and
confidence', or 'attempts to set up collaboration') to facilitate the
evaluation of the session. Those constructs, traditionally scored by trained
human raters, reflect the complex nature of psychotherapy and highly depend on
the context of the interaction. Recent advances in deep contextualized language
models offer an avenue for accurate in-domain linguistic representations which
can lead to robust recognition and scoring of such psychotherapy-relevant
behavioral constructs, and support quality assurance and supervision. In this
work, a BERT-based model is proposed for automatic behavioral scoring of a
specific type of psychotherapy, called Cognitive Behavioral Therapy (CBT),
where prior work is limited to frequency-based language features and/or short
text excerpts which do not capture the unique elements involved in a
spontaneous long conversational interaction. The model is trained in a
multi-task manner in order to achieve higher interpretability. BERT-based
representations are further augmented with available therapy metadata,
providing relevant non-linguistic context and leading to consistent performance
improvements.
Related papers
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
We propose a new benchmark, CBT-BENCH, for the systematic evaluation of cognitive behavioral therapy (CBT) assistance.
We include three levels of tasks in CBT-BENCH: I: Basic CBT knowledge acquisition, with the task of multiple-choice questions; II: Cognitive model understanding, with the tasks of cognitive distortion classification, primary core belief classification, and fine-grained core belief classification; III: Therapeutic response generation, with the task of generating responses to patient speech in CBT therapy sessions.
Experimental results indicate that while LLMs perform well in reciting CBT knowledge, they fall short in complex real-world scenarios
arXiv Detail & Related papers (2024-10-17T04:52:57Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
Large language models (LLMs) have been validated, providing new possibilities for psychological assistance therapy.
Many concerns have been raised by mental health experts regarding the use of LLMs for therapy.
Four LLM variants with excellent performance on natural language processing are evaluated.
arXiv Detail & Related papers (2024-07-25T03:01:47Z) - COMPASS: Computational Mapping of Patient-Therapist Alliance Strategies with Language Modeling [14.04866656172336]
We present a novel framework to infer the therapeutic working alliance from the natural language used in psychotherapy sessions.
Our approach utilizes advanced large language models (LLMs) to analyze transcripts of psychotherapy sessions and compare them with distributed representations of statements in the working alliance inventory.
arXiv Detail & Related papers (2024-02-22T16:56:44Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
This study investigates the efficacy of Large Language Models (LLMs) in interactive language therapy for high-functioning autistic adolescents.
LLMs present a novel opportunity to augment traditional psychological counseling methods.
arXiv Detail & Related papers (2023-11-12T07:55:39Z) - Interactive Natural Language Processing [67.87925315773924]
Interactive Natural Language Processing (iNLP) has emerged as a novel paradigm within the field of NLP.
This paper offers a comprehensive survey of iNLP, starting by proposing a unified definition and framework of the concept.
arXiv Detail & Related papers (2023-05-22T17:18:29Z) - "Am I A Good Therapist?" Automated Evaluation Of Psychotherapy Skills
Using Speech And Language Technologies [38.726068038788384]
We describe our platform and its performance, using a dataset of more than 5,000 recordings.
Our system gives comprehensive feedback to the therapist, including information about the dynamics of the session.
We are confident that a widespread use of automated psychotherapy rating tools in the near future will augment experts' capabilities.
arXiv Detail & Related papers (2021-02-22T18:52:52Z) - Pose-based Body Language Recognition for Emotion and Psychiatric Symptom
Interpretation [75.3147962600095]
We propose an automated framework for body language based emotion recognition starting from regular RGB videos.
In collaboration with psychologists, we extend the framework for psychiatric symptom prediction.
Because a specific application domain of the proposed framework may only supply a limited amount of data, the framework is designed to work on a small training set.
arXiv Detail & Related papers (2020-10-30T18:45:16Z) - Feature Fusion Strategies for End-to-End Evaluation of Cognitive
Behavior Therapy Sessions [32.198800906972366]
We develop an end-to-end pipeline that converts speech audio to diarized and transcribed text to code Cognitive Behavioral Therapy sessions automatically.
We propose a novel method to augment the word-based features with the utterance level tags for subsequent CBT code estimation.
arXiv Detail & Related papers (2020-05-15T22:26:58Z) - You Impress Me: Dialogue Generation via Mutual Persona Perception [62.89449096369027]
The research in cognitive science suggests that understanding is an essential signal for a high-quality chit-chat conversation.
Motivated by this, we propose P2 Bot, a transmitter-receiver based framework with the aim of explicitly modeling understanding.
arXiv Detail & Related papers (2020-04-11T12:51:07Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.