Dynamic Graph Modeling of Simultaneous EEG and Eye-tracking Data for
Reading Task Identification
- URL: http://arxiv.org/abs/2102.11922v1
- Date: Sun, 21 Feb 2021 18:19:49 GMT
- Title: Dynamic Graph Modeling of Simultaneous EEG and Eye-tracking Data for
Reading Task Identification
- Authors: Puneet Mathur, Trisha Mittal and Dinesh Manocha
- Abstract summary: We present a new approach, that we call AdaGTCN, for identifying human reader intent from Electroencephalogram(EEG) and Eye movement(EM) data.
Our method, Adaptive Graph Temporal Convolution Network (AdaGTCN), uses an Adaptive Graph Learning Layer and Deep Neighborhood Graph Convolution Layer.
We compare our approach with several baselines to report an improvement of 6.29% on the ZuCo 2.0 dataset, along with extensive ablation experiments.
- Score: 79.41619843969347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a new approach, that we call AdaGTCN, for identifying human reader
intent from Electroencephalogram~(EEG) and Eye movement~(EM) data in order to
help differentiate between normal reading and task-oriented reading.
Understanding the physiological aspects of the reading process~(the cognitive
load and the reading intent) can help improve the quality of crowd-sourced
annotated data. Our method, Adaptive Graph Temporal Convolution Network
(AdaGTCN), uses an Adaptive Graph Learning Layer and Deep Neighborhood Graph
Convolution Layer for identifying the reading activities using time-locked EEG
sequences recorded during word-level eye-movement fixations. Adaptive Graph
Learning Layer dynamically learns the spatial correlations between the EEG
electrode signals while the Deep Neighborhood Graph Convolution Layer exploits
temporal features from a dense graph neighborhood to establish the state of the
art in reading task identification over other contemporary approaches. We
compare our approach with several baselines to report an improvement of 6.29%
on the ZuCo 2.0 dataset, along with extensive ablation experiments
Related papers
- Graph-Level Embedding for Time-Evolving Graphs [24.194795771873046]
Graph representation learning (also known as network embedding) has been extensively researched with varying levels of granularity.
We present a novel method for temporal graph-level embedding that addresses this gap.
arXiv Detail & Related papers (2023-06-01T01:50:37Z) - Directed Acyclic Graph Structure Learning from Dynamic Graphs [44.21230819336437]
Estimating the structure of directed acyclic graphs (DAGs) of features (variables) plays a vital role in revealing the latent data generation process.
We study the learning problem of node feature generation mechanism on such ubiquitous dynamic graph data.
arXiv Detail & Related papers (2022-11-30T14:22:01Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - GPS: A Policy-driven Sampling Approach for Graph Representation Learning [12.760239169374984]
We propose an adaptive Graph Policy-driven Sampling model (GPS), where the influence of each node in the local neighborhood is realized through the adaptive correlation calculation.
Our proposed model outperforms the existing ones by 3%-8% on several vital benchmarks, achieving state-of-the-art performance in real-world datasets.
arXiv Detail & Related papers (2021-12-29T09:59:53Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
We propose a Transformer-based dynamic graph learning method named Dynamic Graph Transformer (DGT)
DGT has spatial-temporal encoding to effectively learn graph topology and capture implicit links.
We show that DGT presents superior performance compared with several state-of-the-art baselines.
arXiv Detail & Related papers (2021-11-19T21:44:23Z) - Learning Dynamic Graph Representation of Brain Connectome with
Spatio-Temporal Attention [33.049423523704824]
We propose STAGIN, a method for learning dynamic graph representation of the brain connectome with temporal attention.
Experiments on the HCP-Rest and the HCP-Task datasets demonstrate exceptional performance of our proposed method.
arXiv Detail & Related papers (2021-05-27T23:06:50Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
We propose a novel framework to pursue discriminative and robust representation by modeling cross-scale spatial-temporal correlation.
CTL utilizes a CNN backbone and a key-points estimator to extract semantic local features from human body.
It explores a context-reinforced topology to construct multi-scale graphs by considering both global contextual information and physical connections of human body.
arXiv Detail & Related papers (2021-04-15T14:32:12Z) - CogDL: A Comprehensive Library for Graph Deep Learning [55.694091294633054]
We present CogDL, a library for graph deep learning that allows researchers and practitioners to conduct experiments, compare methods, and build applications with ease and efficiency.
In CogDL, we propose a unified design for the training and evaluation of GNN models for various graph tasks, making it unique among existing graph learning libraries.
We develop efficient sparse operators for CogDL, enabling it to become the most competitive graph library for efficiency.
arXiv Detail & Related papers (2021-03-01T12:35:16Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Structural Temporal Graph Neural Networks for Anomaly Detection in
Dynamic Graphs [54.13919050090926]
We propose an end-to-end structural temporal Graph Neural Network model for detecting anomalous edges in dynamic graphs.
In particular, we first extract the $h$-hop enclosing subgraph centered on the target edge and propose the node labeling function to identify the role of each node in the subgraph.
Based on the extracted features, we utilize Gated recurrent units (GRUs) to capture the temporal information for anomaly detection.
arXiv Detail & Related papers (2020-05-15T09:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.