Unsupervised semantic discovery through visual patterns detection
- URL: http://arxiv.org/abs/2102.12213v1
- Date: Wed, 24 Feb 2021 11:13:15 GMT
- Title: Unsupervised semantic discovery through visual patterns detection
- Authors: Francesco Pelosin, Andrea Gasparetto, Andrea Albarelli, Andrea
Torsello
- Abstract summary: Our algorithm is able to hierarchically find visual categories and produce a segmentation mask where previous methods fail.
Our algorithm is composed by two phases. A filtering phase, which selects semantical hotsposts by means of an accumulator space, then a clustering phase which propagates the semantic properties of the hotspots on a superpixels basis.
- Score: 4.129225533930966
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new fast fully unsupervised method to discover semantic
patterns. Our algorithm is able to hierarchically find visual categories and
produce a segmentation mask where previous methods fail. Through the modeling
of what is a visual pattern in an image, we introduce the notion of "semantic
levels" and devise a conceptual framework along with measures and a dedicated
benchmark dataset for future comparisons. Our algorithm is composed by two
phases. A filtering phase, which selects semantical hotsposts by means of an
accumulator space, then a clustering phase which propagates the semantic
properties of the hotspots on a superpixels basis. We provide both qualitative
and quantitative experimental validation, achieving optimal results in terms of
robustness to noise and semantic consistency. We also made code and dataset
publicly available.
Related papers
- SemFlow: Binding Semantic Segmentation and Image Synthesis via Rectified Flow [94.90853153808987]
Semantic segmentation and semantic image synthesis are representative tasks in visual perception and generation.
We propose a unified framework (SemFlow) and model them as a pair of reverse problems.
Experiments show that our SemFlow achieves competitive results on semantic segmentation and semantic image synthesis tasks.
arXiv Detail & Related papers (2024-05-30T17:34:40Z) - Semantics Meets Temporal Correspondence: Self-supervised Object-centric Learning in Videos [63.94040814459116]
Self-supervised methods have shown remarkable progress in learning high-level semantics and low-level temporal correspondence.
We propose a novel semantic-aware masked slot attention on top of the fused semantic features and correspondence maps.
We adopt semantic- and instance-level temporal consistency as self-supervision to encourage temporally coherent object-centric representations.
arXiv Detail & Related papers (2023-08-19T09:12:13Z) - ContraFeat: Contrasting Deep Features for Semantic Discovery [102.4163768995288]
StyleGAN has shown strong potential for disentangled semantic control.
Existing semantic discovery methods on StyleGAN rely on manual selection of modified latent layers to obtain satisfactory manipulation results.
We propose a model that automates this process and achieves state-of-the-art semantic discovery performance.
arXiv Detail & Related papers (2022-12-14T15:22:13Z) - Probabilistic Warp Consistency for Weakly-Supervised Semantic
Correspondences [118.6018141306409]
We propose Probabilistic Warp Consistency, a weakly-supervised learning objective for semantic matching.
We first construct an image triplet by applying a known warp to one of the images in a pair depicting different instances of the same object class.
Our objective also brings substantial improvements in the strongly-supervised regime, when combined with keypoint annotations.
arXiv Detail & Related papers (2022-03-08T18:55:11Z) - TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic
Segmentation [44.75300205362518]
Unsupervised semantic segmentation aims to obtain high-level semantic representation on low-level visual features without manual annotations.
We propose the first top-down unsupervised semantic segmentation framework for fine-grained segmentation in extremely complicated scenarios.
Our results show that our top-down unsupervised segmentation is robust to both object-centric and scene-centric datasets.
arXiv Detail & Related papers (2021-12-02T18:59:03Z) - A Pixel-Level Meta-Learner for Weakly Supervised Few-Shot Semantic
Segmentation [40.27705176115985]
Few-shot semantic segmentation addresses the learning task in which only few images with ground truth pixel-level labels are available for the novel classes of interest.
We propose a novel meta-learning framework, which predicts pseudo pixel-level segmentation masks from a limited amount of data and their semantic labels.
Our proposed learning model can be viewed as a pixel-level meta-learner.
arXiv Detail & Related papers (2021-11-02T08:28:11Z) - Learning Contrastive Representation for Semantic Correspondence [150.29135856909477]
We propose a multi-level contrastive learning approach for semantic matching.
We show that image-level contrastive learning is a key component to encourage the convolutional features to find correspondence between similar objects.
arXiv Detail & Related papers (2021-09-22T18:34:14Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
We focus on the task of semantic segmentation, where annotated synthetic data are aplenty, but annotating real data is laborious.
The first criterion, inspired by visual psychophysics, is that the map between the two image domains be phase-preserving.
The second criterion aims to leverage ecological statistics, or regularities in the scene which are manifest in any image of it, regardless of the characteristics of the illuminant or the imaging sensor.
arXiv Detail & Related papers (2020-04-10T06:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.