Stochastic Aggregation in Graph Neural Networks
- URL: http://arxiv.org/abs/2102.12648v2
- Date: Fri, 26 Feb 2021 04:46:00 GMT
- Title: Stochastic Aggregation in Graph Neural Networks
- Authors: Yuanqing Wang, Theofanis Karaletsos
- Abstract summary: Graph neural networks (GNNs) manifest pathologies including over-smoothing and limited power discriminating.
We present a unifying framework for aggregation (STAG) in GNNs, where noise is (adaptively) injected into the aggregation process from the neighborhood to form node embeddings.
- Score: 9.551282469099887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) manifest pathologies including over-smoothing
and limited discriminating power as a result of suboptimally expressive
aggregating mechanisms. We herein present a unifying framework for stochastic
aggregation (STAG) in GNNs, where noise is (adaptively) injected into the
aggregation process from the neighborhood to form node embeddings. We provide
theoretical arguments that STAG models, with little overhead, remedy both of
the aforementioned problems. In addition to fixed-noise models, we also propose
probabilistic versions of STAG models and a variational inference framework to
learn the noise posterior. We conduct illustrative experiments clearly
targeting oversmoothing and multiset aggregation limitations. Furthermore, STAG
enhances general performance of GNNs demonstrated by competitive performance in
common citation and molecule graph benchmark datasets.
Related papers
- CGGM: A conditional graph generation model with adaptive sparsity for node anomaly detection in IoT networks [0.6974178500813132]
We propose a novel graph generation model, called CGGM, specifically for generating samples belonging to the minority class.
The framework consists two core module: a conditional graph generation module and a graph-based anomaly detection module.
Experiments have shown that CGGM outperforms the state-of-the-art methods in terms of accuracy and divergence.
arXiv Detail & Related papers (2024-02-27T09:55:34Z) - A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
We propose a novel framework that combines Graph Neural Network (GNN) and Generative Adrial Network (GAN) to enhance classification for underrepresented node classes.
The framework incorporates an advanced edge generation and selection module, enabling the simultaneous creation of synthetic nodes and edges.
arXiv Detail & Related papers (2023-12-11T16:52:20Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Graph Neural Networks with Parallel Neighborhood Aggregations for Graph
Classification [14.112444998191698]
We focus on graph classification using a graph neural network (GNN) model that precomputes the node features using a bank of neighborhood aggregation graph operators arranged in parallel.
These GNN models have a natural advantage of reduced training and inference time due to the precomputations.
We demonstrate via numerical experiments that the developed model achieves state-of-the-art performance on many diverse real-world datasets.
arXiv Detail & Related papers (2021-11-22T19:19:40Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNN is a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance.
Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix.
arXiv Detail & Related papers (2021-10-27T11:48:50Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Continuous-Depth Neural Models for Dynamic Graph Prediction [16.89981677708299]
We introduce the framework of continuous-depth graph neural networks (GNNs)
Neural graph differential equations (Neural GDEs) are formalized as the counterpart to GNNs.
Results prove the effectiveness of the proposed models across applications, such as traffic forecasting or prediction in genetic regulatory networks.
arXiv Detail & Related papers (2021-06-22T07:30:35Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Stochastic Graph Recurrent Neural Network [6.656993023468793]
We propose SGRNN, a novel neural architecture that applies latent variables to simultaneously capture evolution in node attributes and topology.
Specifically, deterministic states are separated from states in the iterative process to suppress mutual interference.
Experiments on real-world datasets demonstrate the effectiveness of the proposed model.
arXiv Detail & Related papers (2020-09-01T16:14:30Z) - Bayesian Graph Neural Networks with Adaptive Connection Sampling [62.51689735630133]
We propose a unified framework for adaptive connection sampling in graph neural networks (GNNs)
The proposed framework not only alleviates over-smoothing and over-fitting tendencies of deep GNNs, but also enables learning with uncertainty in graph analytic tasks with GNNs.
arXiv Detail & Related papers (2020-06-07T07:06:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.