Blockchained Federated Learning for Threat Defense
- URL: http://arxiv.org/abs/2102.12746v1
- Date: Thu, 25 Feb 2021 09:16:48 GMT
- Title: Blockchained Federated Learning for Threat Defense
- Authors: Konstantinos Demertzis
- Abstract summary: This research paper introduces the development of an intelligent Threat Defense system, employing Federated Learning.
The proposed framework combines Federated Learning for the distributed and continuously validated learning of the tracing algorithms.
The aim of the proposed Framework is to intelligently classify smart cities networks traffic derived from Industrial IoT (IIoT) by Deep Content Inspection (DCI) methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given the increasing complexity of threats in smart cities, the changing
environment, and the weakness of traditional security systems, which in most
cases fail to detect serious threats such as zero-day attacks, the need for
alternative more active and more effective security methods keeps increasing.
Such approaches are the adoption of intelligent solutions to prevent, detect
and deal with threats or anomalies under the conditions and the operating
parameters of the infrastructure in question. This research paper introduces
the development of an intelligent Threat Defense system, employing Blockchain
Federated Learning, which seeks to fully upgrade the way passive intelligent
systems operate, aiming at implementing an Advanced Adaptive Cooperative
Learning (AACL) mechanism for smart cities networks. The AACL is based on the
most advanced methods of computational intelligence while ensuring privacy and
anonymity for participants and stakeholders. The proposed framework combines
Federated Learning for the distributed and continuously validated learning of
the tracing algorithms. Learning is achieved through encrypted smart contracts
within the blockchain technology, for unambiguous validation and control of the
process. The aim of the proposed Framework is to intelligently classify smart
cities networks traffic derived from Industrial IoT (IIoT) by Deep Content
Inspection (DCI) methods, in order to identify anomalies that are usually due
to Advanced Persistent Threat (APT) attacks.
Related papers
- Automated Cybersecurity Compliance and Threat Response Using AI, Blockchain & Smart Contracts [0.36832029288386137]
We present a novel framework that integrates artificial intelligence (AI), blockchain, and smart contracts.
We propose a system that automates the enforcement of security policies, reducing manual effort and potential human error.
arXiv Detail & Related papers (2024-09-12T20:38:14Z) - Strategic Deployment of Honeypots in Blockchain-based IoT Systems [1.3654846342364306]
It introduces an AI-powered system model for the dynamic deployment of honeypots, utilizing an Intrusion Detection System (IDS) integrated with smart contract functionalities on IoT nodes.
The model enables the transformation of regular nodes into decoys in response to suspicious activities, thereby strengthening the security of BIoT networks.
arXiv Detail & Related papers (2024-05-21T17:27:00Z) - Reinforcement Learning-Based Approaches for Enhancing Security and Resilience in Smart Control: A Survey on Attack and Defense Methods [0.3626013617212667]
Reinforcement Learning (RL) learns to make decisions based on real-world experiences.
This paper reviews the latest adversarial RL threats and outlines effective defense strategies tailored to safeguard these applications.
By concentrating on the smart grid and smart home scenarios, this survey equips ML developers and researchers with the insights needed to secure RL applications.
arXiv Detail & Related papers (2024-02-23T21:48:50Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Blockchain Smart Contract Threat Detection Technology Based on Symbolic
Execution [0.0]
Reentrancy vulnerability, which is hidden and complex, poses a great threat to smart contracts.
In this paper, we propose a smart contract threat detection technology based on symbolic execution.
The experimental results show that this method significantly increases both detection efficiency and accuracy.
arXiv Detail & Related papers (2023-12-24T03:27:03Z) - XFedHunter: An Explainable Federated Learning Framework for Advanced
Persistent Threat Detection in SDN [0.0]
This work proposes XFedHunter, an explainable federated learning framework for APT detection in Software-Defined Networking (SDN)
In XFedHunter, Graph Neural Network (GNN) and Deep Learning model are utilized to reveal the malicious events effectively.
The experimental results on NF-ToN-IoT and DARPA TCE3 datasets indicate that our framework can enhance the trust and accountability of ML-based systems.
arXiv Detail & Related papers (2023-09-15T15:44:09Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
We apply the concept of trapping regions, known from qualitative theory of dynamical systems, to create safety sets in the joint strategy space for decentralized learning.
We propose a binary partitioning algorithm for verification that candidate sets form trapping regions in systems with known learning dynamics, and a sampling algorithm for scenarios where learning dynamics are not known.
arXiv Detail & Related papers (2023-02-27T14:47:52Z) - ThreatKG: An AI-Powered System for Automated Open-Source Cyber Threat Intelligence Gathering and Management [65.0114141380651]
ThreatKG is an automated system for OSCTI gathering and management.
It efficiently collects a large number of OSCTI reports from multiple sources.
It uses specialized AI-based techniques to extract high-quality knowledge about various threat entities.
arXiv Detail & Related papers (2022-12-20T16:13:59Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKG is a system for automated OSCTI gathering and management.
It uses a combination of AI and NLP techniques to extract high-fidelity knowledge about threat behaviors.
arXiv Detail & Related papers (2021-01-19T18:31:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.