Distribution-Free Robust Linear Regression
- URL: http://arxiv.org/abs/2102.12919v1
- Date: Thu, 25 Feb 2021 15:10:41 GMT
- Title: Distribution-Free Robust Linear Regression
- Authors: Jaouad Mourtada and Tomas Va\v{s}kevi\v{c}ius and Nikita Zhivotovskiy
- Abstract summary: We study random design linear regression with no assumptions on the distribution of the covariates.
We construct a non-linear estimator achieving excess risk of order $d/n$ with the optimal sub-exponential tail.
We prove an optimal version of the classical bound for the truncated least squares estimator due to Gy"orfi, Kohler, Krzyzak, and Walk.
- Score: 5.532477732693
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study random design linear regression with no assumptions on the
distribution of the covariates and with a heavy-tailed response variable. When
learning without assumptions on the covariates, we establish boundedness of the
conditional second moment of the response variable as a necessary and
sufficient condition for achieving deviation-optimal excess risk rate of
convergence. In particular, combining the ideas of truncated least squares,
median-of-means procedures and aggregation theory, we construct a non-linear
estimator achieving excess risk of order $d/n$ with the optimal sub-exponential
tail. While the existing approaches to learning linear classes under
heavy-tailed distributions focus on proper estimators, we highlight that the
improperness of our estimator is necessary for attaining non-trivial guarantees
in the distribution-free setting considered in this work. Finally, as a
byproduct of our analysis, we prove an optimal version of the classical bound
for the truncated least squares estimator due to Gy\"{o}rfi, Kohler, Krzyzak,
and Walk.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
We revisit the likelihood-based inference principle and propose to use likelihood ratios to construct valid confidence sequences.
Our method is especially suitable for problems with well-specified likelihoods.
We show how to provably choose the best sequence of estimators and shed light on connections to online convex optimization.
arXiv Detail & Related papers (2023-11-08T00:10:21Z) - Pitfall of Optimism: Distributional Reinforcement Learning by
Randomizing Risk Criterion [9.35556128467037]
We present a novel distributional reinforcement learning algorithm that selects actions by randomizing risk criterion to avoid one-sided tendency on risk.
Our theoretical results support that the proposed method does not fall into biased exploration and is guaranteed to converge to an optimal return.
arXiv Detail & Related papers (2023-10-25T10:53:04Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Online and Distribution-Free Robustness: Regression and Contextual
Bandits with Huber Contamination [29.85468294601847]
We revisit two classic high-dimensional online learning problems, namely linear regression and contextual bandits.
We show that our algorithms succeed where conventional methods fail.
arXiv Detail & Related papers (2020-10-08T17:59:05Z) - Robust regression with covariate filtering: Heavy tails and adversarial
contamination [6.939768185086755]
We show how to modify the Huber regression, least trimmed squares, and least absolute deviation estimators to obtain estimators simultaneously computationally and statistically efficient in the stronger contamination model.
We show that the Huber regression estimator achieves near-optimal error rates in this setting, whereas the least trimmed squares and least absolute deviation estimators can be made to achieve near-optimal error after applying a postprocessing step.
arXiv Detail & Related papers (2020-09-27T22:48:48Z) - Suboptimality of Constrained Least Squares and Improvements via
Non-Linear Predictors [3.5788754401889014]
We study the problem of predicting as well as the best linear predictor in a bounded Euclidean ball with respect to the squared loss.
We discuss additional distributional assumptions sufficient to guarantee an $O(d/n)$ excess risk rate for the least squares estimator.
arXiv Detail & Related papers (2020-09-19T21:39:46Z) - On Low-rank Trace Regression under General Sampling Distribution [9.699586426043885]
We show that cross-validated estimators satisfy near-optimal error bounds on general assumptions.
We also show that the cross-validated estimator outperforms the theory-inspired approach of selecting the parameter.
arXiv Detail & Related papers (2019-04-18T02:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.