Persistent Homology and Graphs Representation Learning
- URL: http://arxiv.org/abs/2102.12926v2
- Date: Sun, 28 Feb 2021 15:07:37 GMT
- Title: Persistent Homology and Graphs Representation Learning
- Authors: Mustafa Hajij, Ghada Zamzmi, Xuanting Cai
- Abstract summary: We study the topological invariant properties encoded in node graph representational embeddings by utilizing tools available in persistent homology.
Our construction effectively defines a unique persistence-based graph descriptor, on both the graph and node levels.
To demonstrate the effectiveness of the proposed method, we study the topological descriptors induced by DeepWalk, Node2Vec and Diff2Vec.
- Score: 0.7734726150561088
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article aims to study the topological invariant properties encoded in
node graph representational embeddings by utilizing tools available in
persistent homology. Specifically, given a node embedding representation
algorithm, we consider the case when these embeddings are real-valued. By
viewing these embeddings as scalar functions on a domain of interest, we can
utilize the tools available in persistent homology to study the topological
information encoded in these representations. Our construction effectively
defines a unique persistence-based graph descriptor, on both the graph and node
levels, for every node representation algorithm. To demonstrate the
effectiveness of the proposed method, we study the topological descriptors
induced by DeepWalk, Node2Vec and Diff2Vec.
Related papers
- From axioms over graphs to vectors, and back again: evaluating the
properties of graph-based ontology embeddings [78.217418197549]
One approach to generating embeddings is by introducing a set of nodes and edges for named entities and logical axioms structure.
Methods that embed in graphs (graph projections) have different properties related to the type of axioms they utilize.
arXiv Detail & Related papers (2023-03-29T08:21:49Z) - On the Expressivity of Persistent Homology in Graph Learning [13.608942872770855]
Persistent homology, a technique from computational topology, has recently shown strong empirical performance in the context of graph classification.
This paper provides a brief introduction to persistent homology in the context of graphs, as well as a theoretical discussion and empirical analysis of its expressivity for graph learning tasks.
arXiv Detail & Related papers (2023-02-20T08:19:19Z) - Revisiting Heterophily in Graph Convolution Networks by Learning
Representations Across Topological and Feature Spaces [20.775165967590173]
Graph convolution networks (GCNs) have been enormously successful in learning representations over several graph-based machine learning tasks.
We argue that by learning graph representations across two spaces i.e., topology and feature space GCNs can address heterophily.
We experimentally demonstrate the performance of the proposed GCN framework over semi-supervised node classification task.
arXiv Detail & Related papers (2022-11-01T16:21:10Z) - The PWLR Graph Representation: A Persistent Weisfeiler-Lehman scheme
with Random Walks for Graph Classification [0.6999740786886536]
Persistent Weisfeiler-Lehman Random walk scheme (abbreviated as PWLR) for graph representations.
We generalize many variants of Weisfeiler-Lehman procedures, which are primarily used to embed graphs with discrete node labels.
arXiv Detail & Related papers (2022-08-29T08:50:37Z) - TopoDetect: Framework for Topological Features Detection in Graph
Embeddings [1.005130974691351]
TopoDetect is a Python package that allows the user to investigate if important topological features are preserved in the embeddings of graph representation models.
The framework enables the visualization of the embeddings according to the distribution of the topological features among the nodes.
arXiv Detail & Related papers (2021-10-08T14:54:53Z) - Topological Regularization for Graph Neural Networks Augmentation [12.190045459064413]
We propose a feature augmentation method for graph nodes based on topological regularization.
We have carried out extensive experiments on a large number of datasets to prove the effectiveness of our model.
arXiv Detail & Related papers (2021-04-03T01:37:44Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Node Similarity Preserving Graph Convolutional Networks [51.520749924844054]
Graph Neural Networks (GNNs) explore the graph structure and node features by aggregating and transforming information within node neighborhoods.
We propose SimP-GCN that can effectively and efficiently preserve node similarity while exploiting graph structure.
We validate the effectiveness of SimP-GCN on seven benchmark datasets including three assortative and four disassorative graphs.
arXiv Detail & Related papers (2020-11-19T04:18:01Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.