A Probabilistic Interpretation of Self-Paced Learning with Applications
to Reinforcement Learning
- URL: http://arxiv.org/abs/2102.13176v1
- Date: Thu, 25 Feb 2021 21:06:56 GMT
- Title: A Probabilistic Interpretation of Self-Paced Learning with Applications
to Reinforcement Learning
- Authors: Pascal Klink, Hany Abdulsamad, Boris Belousov, Carlo D'Eramo, Jan
Peters, Joni Pajarinen
- Abstract summary: We present an approach for automated curriculum generation in reinforcement learning.
We formalize the well-known self-paced learning paradigm as inducing a distribution over training tasks.
Experiments show that training on this induced distribution helps to avoid poor local optima across RL algorithms.
- Score: 30.69129405392038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Across machine learning, the use of curricula has shown strong empirical
potential to improve learning from data by avoiding local optima of training
objectives. For reinforcement learning (RL), curricula are especially
interesting, as the underlying optimization has a strong tendency to get stuck
in local optima due to the exploration-exploitation trade-off. Recently, a
number of approaches for an automatic generation of curricula for RL have been
shown to increase performance while requiring less expert knowledge compared to
manually designed curricula. However, these approaches are seldomly
investigated from a theoretical perspective, preventing a deeper understanding
of their mechanics. In this paper, we present an approach for automated
curriculum generation in RL with a clear theoretical underpinning. More
precisely, we formalize the well-known self-paced learning paradigm as inducing
a distribution over training tasks, which trades off between task complexity
and the objective to match a desired task distribution. Experiments show that
training on this induced distribution helps to avoid poor local optima across
RL algorithms in different tasks with uninformative rewards and challenging
exploration requirements.
Related papers
- Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Proximal Curriculum with Task Correlations for Deep Reinforcement Learning [25.10619062353793]
We consider curriculum design in contextual multi-task settings where the agent's final performance is measured w.r.t. a target distribution over complex tasks.
We propose a novel curriculum, ProCuRL-Target, that effectively balances the need for selecting tasks that are not too difficult for the agent while progressing the agent's learning toward the target distribution via leveraging task correlations.
arXiv Detail & Related papers (2024-05-03T21:07:54Z) - Sample Efficient Myopic Exploration Through Multitask Reinforcement
Learning with Diverse Tasks [53.44714413181162]
This paper shows that when an agent is trained on a sufficiently diverse set of tasks, a generic policy-sharing algorithm with myopic exploration design can be sample-efficient.
To the best of our knowledge, this is the first theoretical demonstration of the "exploration benefits" of MTRL.
arXiv Detail & Related papers (2024-03-03T22:57:44Z) - Exploiting Estimation Bias in Clipped Double Q-Learning for Continous Control Reinforcement Learning Tasks [5.968716050740402]
This paper focuses on addressing and exploiting estimation biases in Actor-Critic methods for continuous control tasks.
We design a Bias Exploiting (BE) mechanism to dynamically select the most advantageous estimation bias during training of the RL agent.
Most State-of-the-art Deep RL algorithms can be equipped with the BE mechanism, without hindering performance or computational complexity.
arXiv Detail & Related papers (2024-02-14T10:44:03Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - On the Benefit of Optimal Transport for Curriculum Reinforcement Learning [32.59609255906321]
We focus on framing curricula ass between task distributions.
We frame the generation of a curriculum as a constrained optimal transport problem.
Benchmarks show that this way of curriculum generation can improve upon existing CRL methods.
arXiv Detail & Related papers (2023-09-25T12:31:37Z) - Learning to Optimize for Reinforcement Learning [58.01132862590378]
Reinforcement learning (RL) is essentially different from supervised learning, and in practice, these learneds do not work well even in simple RL tasks.
Agent-gradient distribution is non-independent and identically distributed, leading to inefficient meta-training.
We show that, although only trained in toy tasks, our learned can generalize unseen complex tasks in Brax.
arXiv Detail & Related papers (2023-02-03T00:11:02Z) - MURAL: Meta-Learning Uncertainty-Aware Rewards for Outcome-Driven
Reinforcement Learning [65.52675802289775]
We show that an uncertainty aware classifier can solve challenging reinforcement learning problems.
We propose a novel method for computing the normalized maximum likelihood (NML) distribution.
We show that the resulting algorithm has a number of intriguing connections to both count-based exploration methods and prior algorithms for learning reward functions.
arXiv Detail & Related papers (2021-07-15T08:19:57Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
Curriculum reinforcement learning (CRL) improves the learning speed and stability of an agent by exposing it to a tailored series of tasks throughout learning.
Despite empirical successes, an open question in CRL is how to automatically generate a curriculum for a given reinforcement learning (RL) agent, avoiding manual design.
We propose an answer by interpreting the curriculum generation as an inference problem, where distributions over tasks are progressively learned to approach the target task.
This approach leads to an automatic curriculum generation, whose pace is controlled by the agent, with solid theoretical motivation and easily integrated with deep RL algorithms.
arXiv Detail & Related papers (2020-04-24T15:48:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.