Point Cloud Upsampling and Normal Estimation using Deep Learning for
Robust Surface Reconstruction
- URL: http://arxiv.org/abs/2102.13391v1
- Date: Fri, 26 Feb 2021 10:58:26 GMT
- Title: Point Cloud Upsampling and Normal Estimation using Deep Learning for
Robust Surface Reconstruction
- Authors: Rajat Sharma, Tobias Schwandt, Christian Kunert, Steffen Urban and
Wolfgang Broll
- Abstract summary: We present a novel deep learning architecture for point cloud upsampling.
A noisy point cloud of low density with corresponding point normals is used to estimate a point cloud with higher density and appendant point normals.
- Score: 2.821829060100186
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The reconstruction of real-world surfaces is on high demand in various
applications. Most existing reconstruction approaches apply 3D scanners for
creating point clouds which are generally sparse and of low density. These
points clouds will be triangulated and used for visualization in combination
with surface normals estimated by geometrical approaches. However, the quality
of the reconstruction depends on the density of the point cloud and the
estimation of the surface normals. In this paper, we present a novel deep
learning architecture for point cloud upsampling that enables subsequent stable
and smooth surface reconstruction. A noisy point cloud of low density with
corresponding point normals is used to estimate a point cloud with higher
density and appendant point normals. To this end, we propose a compound loss
function that encourages the network to estimate points that lie on a surface
including normals accurately predicting the orientation of the surface. Our
results show the benefit of estimating normals together with point positions.
The resulting point cloud is smoother, more complete, and the final surface
reconstruction is much closer to ground truth.
Related papers
- Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
We propose an arbitrary-scale Point cloud Upsampling framework using Voxel-based Network (textbfPU-VoxelNet)
Thanks to the completeness and regularity inherited from the voxel representation, voxel-based networks are capable of providing predefined grid space to approximate 3D surface.
A density-guided grid resampling method is developed to generate high-fidelity points while effectively avoiding sampling outliers.
arXiv Detail & Related papers (2024-03-08T07:31:14Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
Normal estimation for 3D point clouds is a fundamental task in 3D geometry processing.
We introduce a new paradigm for learning neural gradient functions, which encourages the neural network to fit the input point clouds.
Our excellent results on widely used benchmarks demonstrate that our method can learn more accurate normals for both unoriented and oriented normal estimation tasks.
arXiv Detail & Related papers (2023-11-01T09:25:29Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
We present a learning-based method, namely GeoUDF, to tackle the problem of reconstructing a discrete surface from a sparse point cloud.
To be specific, we propose a geometry-guided learning method for UDF and its gradient estimation.
To extract triangle meshes from the predicted UDF, we propose a customized edge-based marching cube module.
arXiv Detail & Related papers (2022-11-30T06:02:01Z) - Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors [52.25114448281418]
Current methods are able to reconstruct surfaces by learning Signed Distance Functions (SDFs) from single point clouds without ground truth signed distances or point normals.
We propose to reconstruct highly accurate surfaces from sparse point clouds with an on-surface prior.
Our method can learn SDFs from a single sparse point cloud without ground truth signed distances or point normals.
arXiv Detail & Related papers (2022-04-22T09:45:20Z) - AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds [31.641383879577894]
This paper presents a neural network for robust normal estimation on point clouds, named AdaFit, that can deal with point clouds with noise and density variations.
Existing works use a network to learn point-wise weights for weighted least surface fitting to estimate the normals.
We propose a simple yet effective solution that adds an additional offset prediction to improve the quality of normal estimation.
arXiv Detail & Related papers (2021-08-12T16:37:24Z) - PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving
Paths [54.459879603473034]
We design a novel neural network, named PMP-Net, to mimic the behavior of an earth mover.
It moves each point of the incomplete input to complete the point cloud, where the total distance of point moving paths should be shortest.
It learns a strict and unique correspondence on point-level, which can capture the detailed topology and structure relationships between the incomplete shape and the complete target.
arXiv Detail & Related papers (2020-12-07T01:34:38Z) - RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction [19.535169371240073]
We introduce RfD-Net that jointly detects and reconstructs dense object surfaces directly from point clouds.
We decouple the instance reconstruction into global object localization and local shape prediction.
Our approach consistently outperforms the state-of-the-arts and improves over 11 of mesh IoU in object reconstruction.
arXiv Detail & Related papers (2020-11-30T12:58:05Z) - Skeleton-bridged Point Completion: From Global Inference to Local
Adjustment [48.2757171993437]
We propose a skeleton-bridged point completion network (SK-PCN) for shape completion.
Given a partial scan, our method first predicts its 3D skeleton to obtain the global structure.
We decouple the shape completion into structure estimation and surface reconstruction, which eases the learning difficulty.
arXiv Detail & Related papers (2020-10-14T22:49:30Z) - Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance [30.863194319818223]
We propose to leverage the input point cloud as much as possible, by only adding connectivity information to existing points.
Our key innovation is a surrogate of local connectivity, calculated by comparing the intrinsic/extrinsic metrics.
We demonstrate that our method can not only preserve details, handle ambiguous structures, but also possess strong generalizability to unseen categories.
arXiv Detail & Related papers (2020-07-17T22:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.