Perspectives on individual animal identification from biology and
computer vision
- URL: http://arxiv.org/abs/2103.00560v1
- Date: Sun, 28 Feb 2021 16:50:09 GMT
- Title: Perspectives on individual animal identification from biology and
computer vision
- Authors: Maxime Vidal and Nathan Wolf and Beth Rosenberg and Bradley P. Harris
and Alexander Mathis
- Abstract summary: We review current advances of computer vision identification techniques to provide both computer scientists and biologists with an overview of the available tools.
We conclude by offering recommendations for starting an animal identification project, illustrate current limitations and propose how they might be addressed in the future.
- Score: 58.81800919492064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Identifying individual animals is crucial for many biological investigations.
In response to some of the limitations of current identification methods, new
automated computer vision approaches have emerged with strong performance.
Here, we review current advances of computer vision identification techniques
to provide both computer scientists and biologists with an overview of the
available tools and discuss their applications. We conclude by offering
recommendations for starting an animal identification project, illustrate
current limitations and propose how they might be addressed in the future.
Related papers
- Systematic Literature Review of Vision-Based Approaches to Outdoor Livestock Monitoring with Lessons from Wildlife Studies [4.665771068009825]
We focus on large terrestrial mammals, such as cattle, horses, deer, goats, sheep, koalas, giraffes, and elephants.
We discuss in detail the applicability of current vision-based methods to PLF contexts and promising directions for future research.
arXiv Detail & Related papers (2024-10-07T13:53:17Z) - Computer Vision for Primate Behavior Analysis in the Wild [61.08941894580172]
Video-based behavioral monitoring has great potential for transforming how we study animal cognition and behavior.
There is still a fairly large gap between the exciting prospects and what can actually be achieved in practice today.
arXiv Detail & Related papers (2024-01-29T18:59:56Z) - UniAP: Towards Universal Animal Perception in Vision via Few-shot
Learning [24.157933537030086]
We introduce UniAP, a novel Universal Animal Perception model that enables cross-species perception among various visual tasks.
By capitalizing on the shared visual characteristics among different animals and tasks, UniAP enables the transfer of knowledge from well-studied species to those with limited labeled data or even unseen species.
arXiv Detail & Related papers (2023-08-19T09:13:46Z) - Recent Advances of Local Mechanisms in Computer Vision: A Survey and
Outlook of Recent Work [48.69845068325126]
Local mechanisms are designed to boost the development of computer vision.
They can not only focus on target parts to learn discriminative local representations, but also process information selectively to improve the efficiency.
In this survey, we provide a systematic review of local mechanisms for various computer vision tasks and approaches.
arXiv Detail & Related papers (2023-06-02T22:05:52Z) - Review on Social Behavior Analysis of Laboratory Animals: From
Methodologies to Applications [0.0]
We explore a variety of behaviour detection algorithms, covering traditional vision methods, statistical methods and deep learning methods.
The objective of this work is to provide a thorough investigation of related work, furnishing biologists with a scratch of efficient animal behaviour detection methods.
arXiv Detail & Related papers (2022-06-25T13:40:35Z) - Going Deeper than Tracking: a Survey of Computer-Vision Based
Recognition of Animal Pain and Affective States [1.993938356023085]
An increasing number of works go 'deeper' than tracking, and address automated recognition of animals' internal states such as emotions and pain.
This paper provides a comprehensive survey of computer vision-based research on recognition of affective states and pain in animals.
arXiv Detail & Related papers (2022-06-16T18:50:02Z) - Persistent Animal Identification Leveraging Non-Visual Markers [71.14999745312626]
We aim to locate and provide a unique identifier for each mouse in a cluttered home-cage environment through time.
This is a very challenging problem due to (i) the lack of distinguishing visual features for each mouse, and (ii) the close confines of the scene with constant occlusion.
Our approach achieves 77% accuracy on this animal identification problem, and is able to reject spurious detections when the animals are hidden.
arXiv Detail & Related papers (2021-12-13T17:11:32Z) - Cetacean Translation Initiative: a roadmap to deciphering the
communication of sperm whales [97.41394631426678]
Recent research showed the promise of machine learning tools for analyzing acoustic communication in nonhuman species.
We outline the key elements required for the collection and processing of massive bioacoustic data of sperm whales.
The technological capabilities developed are likely to yield cross-applications and advancements in broader communities investigating non-human communication and animal behavioral research.
arXiv Detail & Related papers (2021-04-17T18:39:22Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
Time-consuming sorting and identification of taxa pose strong limitations on how many insect samples can be processed.
We propose to replace the standard manual approach of human expert-based sorting and identification with an automatic image-based technology.
We use state-of-the-art Resnet-50 and InceptionV3 CNNs for the classification task.
arXiv Detail & Related papers (2020-02-05T21:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.