Categorical Depth Distribution Network for Monocular 3D Object Detection
- URL: http://arxiv.org/abs/2103.01100v1
- Date: Mon, 1 Mar 2021 16:08:29 GMT
- Title: Categorical Depth Distribution Network for Monocular 3D Object Detection
- Authors: Cody Reading, Ali Harakeh, Julia Chae, and Steven L. Waslander
(University of Toronto)
- Abstract summary: Key challenge in monocular 3D detection is accurately predicting object depth.
Many methods attempt to directly estimate depth to assist in 3D detection, but show limited performance as a result of depth inaccuracy.
We propose Categorical Depth Distribution Network (CaDDN) to project rich contextual feature information to the appropriate depth interval in 3D space.
We validate our approach on the KITTI 3D object detection benchmark, where we rank 1st among published monocular methods.
- Score: 7.0405916639906785
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monocular 3D object detection is a key problem for autonomous vehicles, as it
provides a solution with simple configuration compared to typical multi-sensor
systems. The main challenge in monocular 3D detection lies in accurately
predicting object depth, which must be inferred from object and scene cues due
to the lack of direct range measurement. Many methods attempt to directly
estimate depth to assist in 3D detection, but show limited performance as a
result of depth inaccuracy. Our proposed solution, Categorical Depth
Distribution Network (CaDDN), uses a predicted categorical depth distribution
for each pixel to project rich contextual feature information to the
appropriate depth interval in 3D space. We then use the computationally
efficient bird's-eye-view projection and single-stage detector to produce the
final output bounding boxes. We design CaDDN as a fully differentiable
end-to-end approach for joint depth estimation and object detection. We
validate our approach on the KITTI 3D object detection benchmark, where we rank
1st among published monocular methods. We also provide the first monocular 3D
detection results on the newly released Waymo Open Dataset. The source code for
CaDDN will be made publicly available before publication.
Related papers
- OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3D is a single-stage, end-to-end, Occlusion-Aware Pixel-Wise Aggregation network.
It jointly estimates dense scene depth with depth-bounding box residuals and object bounding boxes.
It outperforms state-of-the-art methods on the main Car category.
arXiv Detail & Related papers (2022-11-02T14:19:13Z) - MDS-Net: A Multi-scale Depth Stratification Based Monocular 3D Object
Detection Algorithm [4.958840734249869]
This paper proposes a one-stage monocular 3D object detection algorithm based on multi-scale depth stratification.
Experiments on the KITTI benchmark show that the MDS-Net outperforms the existing monocular 3D detection methods in 3D detection and BEV detection tasks.
arXiv Detail & Related papers (2022-01-12T07:11:18Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - MonoGRNet: A General Framework for Monocular 3D Object Detection [23.59839921644492]
We propose MonoGRNet for the amodal 3D object detection from a monocular image via geometric reasoning.
MonoGRNet decomposes the monocular 3D object detection task into four sub-tasks including 2D object detection, instance-level depth estimation, projected 3D center estimation and local corner regression.
Experiments are conducted on KITTI, Cityscapes and MS COCO datasets.
arXiv Detail & Related papers (2021-04-18T10:07:52Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - DOPS: Learning to Detect 3D Objects and Predict their 3D Shapes [54.239416488865565]
We propose a fast single-stage 3D object detection method for LIDAR data.
The core novelty of our method is a fast, single-pass architecture that both detects objects in 3D and estimates their shapes.
We find that our proposed method achieves state-of-the-art results by 5% on object detection in ScanNet scenes, and it gets top results by 3.4% in the Open dataset.
arXiv Detail & Related papers (2020-04-02T17:48:50Z) - SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint
Estimation [3.1542695050861544]
Estimating 3D orientation and translation of objects is essential for infrastructure-less autonomous navigation and driving.
We propose a novel 3D object detection method, named SMOKE, that combines a single keypoint estimate with regressed 3D variables.
Despite of its structural simplicity, our proposed SMOKE network outperforms all existing monocular 3D detection methods on the KITTI dataset.
arXiv Detail & Related papers (2020-02-24T08:15:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.