Homonuclear J-Coupling Spectroscopy at Low Magnetic Fields using
Spin-Lock Induced Crossing
- URL: http://arxiv.org/abs/2103.01289v1
- Date: Mon, 1 Mar 2021 20:17:24 GMT
- Title: Homonuclear J-Coupling Spectroscopy at Low Magnetic Fields using
Spin-Lock Induced Crossing
- Authors: Stephen J. DeVience, Mason Greer, Soumyajit Mandal, Matthew S. Rosen
- Abstract summary: We demonstrate that spectra can be acquired at low field using a novel pulse sequence called spin-lock induced crossing (SLIC)
This probes energy level crossings induced by a weak spin-locking pulse and produces a unique J-coupling spectrum for most organic molecules.
We performed SLIC spectroscopy on a number of small molecules at 276 kHz and 20.8 MHZ, and we show that SLIC spectra can be simulated in good agreement with measurements.
- Score: 0.03705745122469343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nuclear magnetic resonance (NMR) spectroscopy usually requires high magnetic
fields to create spectral resolution among different proton species. At low
fields, chemical shift dispersion is insufficient to separate the species, and
the spectrum exhibits just a single line. In this work, we demonstrate that
spectra can nevertheless be acquired at low field using a novel pulse sequence
called spin-lock induced crossing (SLIC). This probes energy level crossings
induced by a weak spin-locking pulse and produces a unique J-coupling spectrum
for most organic molecules. Unlike other forms of low-field J-coupling
spectroscopy, our technique does not require the presence of heteronuclei and
can be used for most compounds in their native state. We performed SLIC
spectroscopy on a number of small molecules at 276 kHz and 20.8 MHZ, and we
show that SLIC spectra can be simulated in good agreement with measurements.
Related papers
- Mid-infrared spectroscopy with a broadly tunable thin-film lithium
niobate optical parametric oscillator [45.82374977939355]
Device generates 25 mW of mid-infrared light at 3.2 microns, offering a power conversion efficiency of 15%.
We demonstrate the tuning and performance of the device by successfully measuring the spectra of methane and ammonia.
arXiv Detail & Related papers (2023-07-09T15:08:35Z) - Bipolar single-molecule electroluminescence and electrofluorochromism [50.591267188664666]
We investigate cationic and anionic fluorescence of individual zinc phthalocyanine (ZnPc) molecules adsorbed on ultrathin NaCl films on Ag (111) by using STML.
They depend on the tip-sample bias polarity and appear at threshold voltages that are correlated with the onset energies of particular molecular orbitals.
arXiv Detail & Related papers (2022-10-20T09:22:45Z) - Homonuclear J-Coupling Spectroscopy using J-Synchronized Echo Detection [0.0]
We present an alternative method using a spin echo train in lieu of a spin-locking SLIC pulse.
Spin echo acquisition within the pulse train enables simultaneous collection of time and frequency data.
The resulting 2D spectrum can be used to study dynamic spin evolution.
arXiv Detail & Related papers (2022-04-16T00:41:33Z) - Unsupervised Spectral Unmixing For Telluric Correction Using A Neural
Network Autoencoder [58.720142291102135]
We present a neural network autoencoder approach for extracting a telluric transmission spectrum from a large set of high-precision observed solar spectra from the HARPS-N radial velocity spectrograph.
arXiv Detail & Related papers (2021-11-17T12:54:48Z) - Nearly-Resonant Crystalline-Phononic Coupling in Quantum Spin Liquid
Candidate CsYbSe$_2$ [48.30279211143264]
CsYbSe$$, a recently identified quantum spin liquid (QSL) candidate, exhibits strong crystal electric field excitations.
We identify phonon and CEF modes with Raman spectroscopy and observe strong CEF-phonon mixing resulting in a vibronic bound state.
arXiv Detail & Related papers (2021-11-06T17:00:34Z) - Phonon dephasing and spectral diffusion of quantum emitters in hexagonal
Boron Nitride [52.915502553459724]
Quantum emitters in hexagonal boron nitride (hBN) are emerging as bright and robust sources of single photons for applications in quantum optics.
We study phonon dephasing and spectral diffusion of quantum emitters in hBN via resonant excitation spectroscopy at cryogenic temperatures.
arXiv Detail & Related papers (2021-05-25T05:56:18Z) - Proton-electron mass ratio by high-resolution optical spectroscopy of
ion ensembles in the resolved-carrier regime [0.0]
One-photon optical spectroscopy free of Doppler and transit broadening can be obtained with more easily prepared ensembles of ions.
We show that one-photon optical spectroscopy free of Doppler and transit broadening can also be obtained with more easily prepared ensembles of ions.
arXiv Detail & Related papers (2021-03-22T11:42:14Z) - Kilohertz electron paramagnetic resonance spectroscopy of single
nitrogen centers at zero magnetic field [9.976365365803575]
nitrogen-vacancy centers in diamond serve as an atomic-sized magnetometer.
Current megahertz spectral resolution is still insufficient to resolve key heterogeneous molecular information.
We demonstrate a 27-fold narrower spectrum of single substitutional nitrogen centers in diamond with linewidth of several kilohertz.
arXiv Detail & Related papers (2020-05-29T17:59:48Z) - Two-Dimensional Single- and Multiple-Quantum Correlation Spectroscopy in
Zero-Field Nuclear Magnetic Resonance [55.41644538483948]
We present single- and multiple-quantum correlation $J$-spectroscopy detected in zero magnetic field using a Rb vapor-cell magnetometer.
At zero field the spectrum of ethanol appears as a mixture of carbon isotopomers, and correlation spectroscopy is useful in separating the two composite spectra.
arXiv Detail & Related papers (2020-04-09T10:02:45Z) - Nanoscale zero-field electron spin resonance spectroscopy [8.243565925797414]
We present a method for deploying ZF-ESR spectroscopy at the nanoscale by using a highly sensitive quantum sensor, the nitrogen-vacancy center in diamond.
We also measure the nanoscale ZF-ESR spectrum of a few P1 centers in diamond, and show that the hyperfine coupling constant can be directly extracted from the spectrum.
arXiv Detail & Related papers (2020-02-19T03:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.