Multi-label Classification via Adaptive Resonance Theory-based
Clustering
- URL: http://arxiv.org/abs/2103.01511v2
- Date: Wed, 3 Mar 2021 03:09:52 GMT
- Title: Multi-label Classification via Adaptive Resonance Theory-based
Clustering
- Authors: Naoki Masuyama, Yusuke Nojima, Chu Kiong Loo, Hisao Ishibuchi
- Abstract summary: The paper proposes a multi-label classification algorithm capable of continual learning by applying an Adaptive Resonance Theory (ART)-based clustering algorithm and the Bayesian approach for label probability computation.
Experimental results with synthetic and real-world multi-label datasets show that the proposed algorithm has competitive classification performance to other well-known algorithms.
- Score: 9.58897929546191
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper proposes a multi-label classification algorithm capable of
continual learning by applying an Adaptive Resonance Theory (ART)-based
clustering algorithm and the Bayesian approach for label probability
computation. The ART-based clustering algorithm adaptively and continually
generates prototype nodes corresponding to given data, and the generated nodes
are used as classifiers. The label probability computation independently counts
the number of label appearances for each class and calculates the Bayesian
probabilities. Thus, the label probability computation can cope with an
increase in the number of labels. Experimental results with synthetic and
real-world multi-label datasets show that the proposed algorithm has
competitive classification performance to other well-known algorithms while
realizing continual learning.
Related papers
- Dual-Decoupling Learning and Metric-Adaptive Thresholding for Semi-Supervised Multi-Label Learning [81.83013974171364]
Semi-supervised multi-label learning (SSMLL) is a powerful framework for leveraging unlabeled data to reduce the expensive cost of collecting precise multi-label annotations.
Unlike semi-supervised learning, one cannot select the most probable label as the pseudo-label in SSMLL due to multiple semantics contained in an instance.
We propose a dual-perspective method to generate high-quality pseudo-labels.
arXiv Detail & Related papers (2024-07-26T09:33:53Z) - Multi-Label Noise Transition Matrix Estimation with Label Correlations:
Theory and Algorithm [73.94839250910977]
Noisy multi-label learning has garnered increasing attention due to the challenges posed by collecting large-scale accurate labels.
The introduction of transition matrices can help model multi-label noise and enable the development of statistically consistent algorithms.
We propose a novel estimator that leverages label correlations without the need for anchor points or precise fitting of noisy class posteriors.
arXiv Detail & Related papers (2023-09-22T08:35:38Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Neighbour Consistency Guided Pseudo-Label Refinement for Unsupervised
Person Re-Identification [80.98291772215154]
Unsupervised person re-identification (ReID) aims at learning discriminative identity features for person retrieval without any annotations.
Recent advances accomplish this task by leveraging clustering-based pseudo labels.
We propose a Neighbour Consistency guided Pseudo Label Refinement framework.
arXiv Detail & Related papers (2022-11-30T09:39:57Z) - Class-wise Classifier Design Capable of Continual Learning using
Adaptive Resonance Theory-based Topological Clustering [4.772368796656325]
This paper proposes a supervised classification algorithm capable of continual learning by utilizing an Adaptive Resonance (ART)-based growing self-organizing clustering algorithm.
The ART-based clustering algorithm is theoretically capable of continual learning.
The proposed algorithm has superior classification performance compared with state-of-the-art clustering-based classification algorithms capable of continual learning.
arXiv Detail & Related papers (2022-03-18T11:43:12Z) - pRSL: Interpretable Multi-label Stacking by Learning Probabilistic Rules [0.0]
We present the probabilistic rule stacking (pRSL) which uses probabilistic propositional logic rules and belief propagation to combine the predictions of several underlying classifiers.
We derive algorithms for exact and approximate inference and learning, and show that pRSL reaches state-of-the-art performance on various benchmark datasets.
arXiv Detail & Related papers (2021-05-28T14:06:21Z) - Learning Noise Transition Matrix from Only Noisy Labels via Total
Variation Regularization [88.91872713134342]
We propose a theoretically grounded method that can estimate the noise transition matrix and learn a classifier simultaneously.
We show the effectiveness of the proposed method through experiments on benchmark and real-world datasets.
arXiv Detail & Related papers (2021-02-04T05:09:18Z) - Predictive K-means with local models [0.028675177318965035]
Predictive clustering seeks to obtain the best of the two worlds.
We present two new algorithms using this technique and show on a variety of data sets that they are competitive for prediction performance.
arXiv Detail & Related papers (2020-12-16T10:49:36Z) - Knowledge-Based Construction of Confusion Matrices for Multi-Label
Classification Algorithms using Semantic Similarity Measures [4.38301148531795]
This research paper defines a novel approach that aligns expected labels with predicted labels in multi-label classification.
We use it to develop a method for creating precise confusion matrices for a more effective evaluation of multi-label classification algorithms.
arXiv Detail & Related papers (2020-10-30T21:18:19Z) - Evolving Multi-label Classification Rules by Exploiting High-order Label
Correlation [2.9822184411723645]
In multi-label classification tasks, each problem instance is associated with multiple classes simultaneously.
The correlation between labels can be exploited at different levels such as capturing the pair-wise correlation or exploiting the higher-order correlations.
This paper aims at exploiting the high-order label correlation within subsets of labels using a supervised learning classifier system.
arXiv Detail & Related papers (2020-07-22T18:13:12Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.