DeepFake-o-meter: An Open Platform for DeepFake Detection
- URL: http://arxiv.org/abs/2103.02018v1
- Date: Tue, 2 Mar 2021 20:45:33 GMT
- Title: DeepFake-o-meter: An Open Platform for DeepFake Detection
- Authors: Yuezun Li, Cong Zhang, Pu Sun, Honggang Qi, and Siwei Lyu
- Abstract summary: We develop an open-source online platform, known as DeepFake-o-meter, that integrates state-of-the-art DeepFake detection methods.
We describe the design and function of DeepFake-o-meter in this work.
- Score: 36.62547135445819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, the advent of deep learning-based techniques and the
significant reduction in the cost of computation resulted in the feasibility of
creating realistic videos of human faces, commonly known as DeepFakes. The
availability of open-source tools to create DeepFakes poses as a threat to the
trustworthiness of the online media. In this work, we develop an open-source
online platform, known as DeepFake-o-meter, that integrates state-of-the-art
DeepFake detection methods and provide a convenient interface for the users. We
describe the design and function of DeepFake-o-meter in this work.
Related papers
- Deepfake detection in videos with multiple faces using geometric-fakeness features [79.16635054977068]
Deepfakes of victims or public figures can be used by fraudsters for blackmailing, extorsion and financial fraud.
In our research we propose to use geometric-fakeness features (GFF) that characterize a dynamic degree of a face presence in a video.
We employ our approach to analyze videos with multiple faces that are simultaneously present in a video.
arXiv Detail & Related papers (2024-10-10T13:10:34Z) - Semantics-Oriented Multitask Learning for DeepFake Detection: A Joint Embedding Approach [77.65459419417533]
We propose an automatic dataset expansion technique to support semantics-oriented DeepFake detection tasks.
We also resort to joint embedding of face images and their corresponding labels for prediction.
Our method improves the generalizability of DeepFake detection and renders some degree of model interpretation by providing human-understandable explanations.
arXiv Detail & Related papers (2024-08-29T07:11:50Z) - DeepFake-O-Meter v2.0: An Open Platform for DeepFake Detection [23.879850908167278]
DeepFake-O-Meter integrates state-of-the-art methods for detecting Deepfake images, videos, and audio.
The platform aims to offer everyday users a convenient service for analyzing DeepFake media using multiple state-of-the-art detection algorithms.
arXiv Detail & Related papers (2024-04-19T19:24:20Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
We introduce GazeForensics, an innovative DeepFake detection method that utilizes gaze representation obtained from a 3D gaze estimation model.
Experiment results reveal that our proposed GazeForensics outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-11-13T04:48:33Z) - DeePhy: On Deepfake Phylogeny [58.01631614114075]
DeePhy is a novel Deepfake Phylogeny dataset which consists of 5040 deepfake videos generated using three different generation techniques.
We present the benchmark on DeePhy dataset using six deepfake detection algorithms.
arXiv Detail & Related papers (2022-09-19T15:30:33Z) - A Survey of Deep Fake Detection for Trial Courts [2.320417845168326]
DeepFake algorithms can create fake images and videos that humans cannot distinguish from authentic ones.
It is become essential to detect fake videos to avoid spreading false information.
This paper presents a survey of methods used to detect DeepFakes and datasets available for detecting DeepFakes.
arXiv Detail & Related papers (2022-05-31T13:50:25Z) - DeepFakes: Detecting Forged and Synthetic Media Content Using Machine
Learning [18.623444153774948]
The study presents challenges, research trends, and directions related to DeepFake creation and detection techniques.
The study reviews the notable research in the DeepFake domain to facilitate the development of more robust approaches that could deal with the more advance DeepFake in the future.
arXiv Detail & Related papers (2021-09-07T05:19:36Z) - DeepFake Detection with Inconsistent Head Poses: Reproducibility and
Analysis [0.0]
We analyze an existing DeepFake detection technique based on head pose estimation.
Our results correct the current literature's perception of state of the art performance for DeepFake detection.
arXiv Detail & Related papers (2021-08-28T22:56:09Z) - Countering Malicious DeepFakes: Survey, Battleground, and Horizon [17.153920019319603]
The creation and the manipulation of facial appearance via deep generative approaches, known as DeepFake, have achieved significant progress.
The evil side of this new technique poses another popular study, i.e., DeepFake detection aiming to identify the fake faces from the real ones.
With the rapid development of the DeepFake-related studies in the community, both sides (i.e., DeepFake generation and detection) have formed the relationship of the battleground.
arXiv Detail & Related papers (2021-02-27T13:48:54Z) - WildDeepfake: A Challenging Real-World Dataset for Deepfake Detection [82.42495493102805]
We introduce a new dataset WildDeepfake which consists of 7,314 face sequences extracted from 707 deepfake videos collected completely from the internet.
We conduct a systematic evaluation of a set of baseline detection networks on both existing and our WildDeepfake datasets, and show that WildDeepfake is indeed a more challenging dataset, where the detection performance can decrease drastically.
arXiv Detail & Related papers (2021-01-05T11:10:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.