Controlling the Sense of Agency in Dyadic Robot Interaction: An Active
Inference Approach
- URL: http://arxiv.org/abs/2103.02137v1
- Date: Wed, 3 Mar 2021 02:38:09 GMT
- Title: Controlling the Sense of Agency in Dyadic Robot Interaction: An Active
Inference Approach
- Authors: Nadine Wirkuttis and Jun Tani
- Abstract summary: We examine dyadic imitative interactions of robots using a variational recurrent neural network model.
We examined how regulating the complexity term to minimize free energy during training determines the dynamic characteristics of networks.
- Score: 6.421670116083633
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigated how social interaction among robotic agents changes
dynamically depending on individual sense of agency. In a set of simulation
studies, we examine dyadic imitative interactions of robots using a variational
recurrent neural network model. The model is based on the free energy principle
such that interacting robots find themselves in a loop, attempting to predict
and infer each other's actions using active inference. We examined how
regulating the complexity term to minimize free energy during training
determines the dynamic characteristics of networks and affects dyadic imitative
interactions. Our simulation results show that through softer regulation of the
complexity term, a robot with stronger agency develops and dominates its
counterpart developed with weaker agency through tighter regulation. When two
robots are trained with equally soft regulation, both generate individual
intended behavior patterns, ignoring each other. We argue that primary
intersubjectivity does develop in dyadic robotic interactions.
Related papers
- GeMuCo: Generalized Multisensory Correlational Model for Body Schema Learning [18.64205729932939]
Humans can learn the relationship between sensation and motion in their own bodies.
Current robots control their bodies by learning the network structure described by humans from their experiences.
arXiv Detail & Related papers (2024-09-10T11:19:13Z) - Interactive Multi-Robot Flocking with Gesture Responsiveness and Musical Accompaniment [0.7659052547635159]
This work presents a compelling multi-robot task in which the main aim is to enthrall and interest.
In this task, the goal is for a human to be drawn to move alongside and participate in a dynamic, expressive robot flock.
Towards this aim, the research team created algorithms for robot movements and engaging interaction modes such as gestures and sound.
arXiv Detail & Related papers (2024-03-30T18:16:28Z) - Robot Interaction Behavior Generation based on Social Motion Forecasting for Human-Robot Interaction [9.806227900768926]
We propose to model social motion forecasting in a shared human-robot representation space.
ECHO operates in the aforementioned shared space to predict the future motions of the agents encountered in social scenarios.
We evaluate our model in multi-person and human-robot motion forecasting tasks and obtain state-of-the-art performance by a large margin.
arXiv Detail & Related papers (2024-02-07T11:37:14Z) - Persistent-Transient Duality: A Multi-mechanism Approach for Modeling
Human-Object Interaction [58.67761673662716]
Humans are highly adaptable, swiftly switching between different modes to handle different tasks, situations and contexts.
In Human-object interaction (HOI) activities, these modes can be attributed to two mechanisms: (1) the large-scale consistent plan for the whole activity and (2) the small-scale children interactive actions that start and end along the timeline.
This work proposes to model two concurrent mechanisms that jointly control human motion.
arXiv Detail & Related papers (2023-07-24T12:21:33Z) - Learning Goal-based Movement via Motivational-based Models in Cognitive
Mobile Robots [58.720142291102135]
Humans have needs motivating their behavior according to intensity and context.
We also create preferences associated with each action's perceived pleasure, which is susceptible to changes over time.
This makes decision-making more complex, requiring learning to balance needs and preferences according to the context.
arXiv Detail & Related papers (2023-02-20T04:52:24Z) - Interpreting Neural Policies with Disentangled Tree Representations [58.769048492254555]
We study interpretability of compact neural policies through the lens of disentangled representation.
We leverage decision trees to obtain factors of variation for disentanglement in robot learning.
We introduce interpretability metrics that measure disentanglement of learned neural dynamics.
arXiv Detail & Related papers (2022-10-13T01:10:41Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
This paper presents several human-robot systems that utilize spatial computing to enable novel robot use cases.
The combination of spatial computing and egocentric sensing on mixed reality devices enables them to capture and understand human actions and translate these to actions with spatial meaning.
arXiv Detail & Related papers (2022-02-03T10:04:26Z) - Affect-Driven Modelling of Robot Personality for Collaborative
Human-Robot Interactions [16.40684407420441]
Collaborative interactions require social robots to adapt to the dynamics of human affective behaviour.
We propose a novel framework for personality-driven behaviour generation in social robots.
arXiv Detail & Related papers (2020-10-14T16:34:14Z) - Human Perception of Intrinsically Motivated Autonomy in Human-Robot
Interaction [2.485182034310304]
A challenge in using robots in human-inhabited environments is to design behavior that is engaging, yet robust to the perturbations induced by human interaction.
Our idea is to imbue the robot with intrinsic motivation (IM) so that it can handle new situations and appears as a genuine social other to humans.
This article presents a "robotologist" study design that allows comparing autonomously generated behaviors with each other.
arXiv Detail & Related papers (2020-02-14T09:49:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.