Natural Language Understanding for Argumentative Dialogue Systems in the
Opinion Building Domain
- URL: http://arxiv.org/abs/2103.02691v1
- Date: Wed, 3 Mar 2021 21:17:24 GMT
- Title: Natural Language Understanding for Argumentative Dialogue Systems in the
Opinion Building Domain
- Authors: Waheed Ahmed Abro, Annalena Aicher, Niklas Rach, Stefan Ultes,
Wolfgang Minker, Guilin Qi
- Abstract summary: This paper introduces a framework for argumentative dialogue systems in the information-seeking domain.
Our approach distinguishes multiple user intents and identifies system arguments the user refers to in his or her natural language utterances.
- Score: 6.951113351928047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a natural language understanding (NLU) framework for
argumentative dialogue systems in the information-seeking and opinion building
domain. Our approach distinguishes multiple user intents and identifies system
arguments the user refers to in his or her natural language utterances. Our
model is applicable in an argumentative dialogue system that allows the user to
inform him-/herself about and build his/her opinion towards a controversial
topic. In order to evaluate the proposed approach, we collect user utterances
for the interaction with the respective system and labeled with intent and
reference argument in an extensive online study. The data collection includes
multiple topics and two different user types (native speakers from the UK and
non-native speakers from China). The evaluation indicates a clear advantage of
the utilized techniques over baseline approaches, as well as a robustness of
the proposed approach against new topics and different language proficiency as
well as cultural background of the user.
Related papers
- A Unifying Framework for Learning Argumentation Semantics [50.69905074548764]
We present a novel framework, which uses an Inductive Logic Programming approach to learn the acceptability semantics for several abstract and structured argumentation frameworks in an interpretable way.
Our framework outperforms existing argumentation solvers, thus opening up new future research directions in the area of formal argumentation and human-machine dialogues.
arXiv Detail & Related papers (2023-10-18T20:18:05Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
This paper proposes to model multi-turn dialogues from a topic-aware perspective.
We use a dialogue segmentation algorithm to split a dialogue passage into topic-concentrated fragments in an unsupervised way.
We also present a novel model, Topic-Aware Dual-Attention Matching (TADAM) Network, which takes topic segments as processing elements.
arXiv Detail & Related papers (2023-09-18T11:03:55Z) - PK-Chat: Pointer Network Guided Knowledge Driven Generative Dialogue
Model [79.64376762489164]
PK-Chat is a Pointer network guided generative dialogue model, incorporating a unified pretrained language model and a pointer network over knowledge graphs.
The words generated by PK-Chat in the dialogue are derived from the prediction of word lists and the direct prediction of the external knowledge graph knowledge.
Based on the PK-Chat, a dialogue system is built for academic scenarios in the case of geosciences.
arXiv Detail & Related papers (2023-04-02T18:23:13Z) - Customized Conversational Recommender Systems [45.84713970070487]
Conversational recommender systems (CRS) aim to capture user's current intentions and provide recommendations through real-time multi-turn conversational interactions.
We propose a novel CRS model, coined Customized Conversational Recommender System ( CCRS), which customizes CRS model for users from three perspectives.
To provide personalized recommendations, we extract user's current fine-grained intentions from dialogue context with the guidance of user's inherent preferences.
arXiv Detail & Related papers (2022-06-30T09:45:36Z) - Helpfulness and Fairness of Task-Oriented Dialogue Systems [35.135740285082356]
We study computational measurements of helpfulness of goal-oriented dialogue systems.
We propose to use the helpfulness level of a dialogue system towards different user queries to measure the fairness of a dialogue system.
arXiv Detail & Related papers (2022-05-25T07:58:38Z) - Towards Large-Scale Interpretable Knowledge Graph Reasoning for Dialogue
Systems [109.16553492049441]
We propose a novel method to incorporate the knowledge reasoning capability into dialogue systems in a more scalable and generalizable manner.
To the best of our knowledge, this is the first work to have transformer models generate responses by reasoning over differentiable knowledge graphs.
arXiv Detail & Related papers (2022-03-20T17:51:49Z) - Every time I fire a conversational designer, the performance of the
dialog system goes down [0.07696728525672149]
We investigate how the use of explicit domain knowledge of conversational designers affects the performance of neural-based dialogue systems.
We propose the Conversational-Logic-Injection-in-Neural-Network system (CLINN) where explicit knowledge is coded in semi-logical rules.
arXiv Detail & Related papers (2021-09-27T13:05:31Z) - Evaluating Groundedness in Dialogue Systems: The BEGIN Benchmark [29.722504033424382]
Knowledge-grounded dialogue agents are systems designed to conduct a conversation based on externally provided background information, such as a Wikipedia page.
We introduce the Benchmark for Evaluation of Grounded INteraction (BEGIN)
BEGIN consists of 8113 dialogue turns generated by language-model-based dialogue systems, accompanied by humans annotations specifying the relationship between the system's response and the background information.
arXiv Detail & Related papers (2021-04-30T20:17:52Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
This paper proposes to track dialogue states gradually with reasoning over dialogue turns with the help of the back-end data.
Empirical results demonstrate that our method significantly outperforms the state-of-the-art methods by 38.6% in terms of joint belief accuracy for MultiWOZ 2.1.
arXiv Detail & Related papers (2020-05-27T02:05:33Z) - Dialogue-Based Relation Extraction [53.2896545819799]
We present the first human-annotated dialogue-based relation extraction (RE) dataset DialogRE.
We argue that speaker-related information plays a critical role in the proposed task, based on an analysis of similarities and differences between dialogue-based and traditional RE tasks.
Experimental results demonstrate that a speaker-aware extension on the best-performing model leads to gains in both the standard and conversational evaluation settings.
arXiv Detail & Related papers (2020-04-17T03:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.