Morphset:Augmenting categorical emotion datasets with dimensional affect
labels using face morphing
- URL: http://arxiv.org/abs/2103.02854v1
- Date: Thu, 4 Mar 2021 06:33:06 GMT
- Title: Morphset:Augmenting categorical emotion datasets with dimensional affect
labels using face morphing
- Authors: Vassilios Vonikakis, Dexter Neo, Stefan Winkler
- Abstract summary: We propose a method to generate syntheticimages from existing categorical emotion datasets using facemorphing.
This method achieves augmentation factors of at least 20x or more.
- Score: 3.8558530661279224
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Emotion recognition and understanding is a vital componentin human-machine
interaction. Dimensional models of affectsuch as those using valence and
arousal have advantages overtraditional categorical ones due to the complexity
of emo-tional states in humans. However, dimensional emotion an-notations are
difficult and expensive to collect, therefore theyare still limited in the
affective computing community. To ad-dress these issues, we propose a method to
generate syntheticimages from existing categorical emotion datasets using
facemorphing, with full control over the resulting sample distri-bution as well
as dimensional labels in the circumplex space,while achieving augmentation
factors of at least 20x or more.
Related papers
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.
We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.
Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.
Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - AffectNet+: A Database for Enhancing Facial Expression Recognition with Soft-Labels [2.644902054473556]
We propose a new approach to create FER datasets through a labeling method in which an image is labeled with more than one emotion.
Finding smoother decision boundaries, enabling multi-labeling, and mitigating bias and imbalanced data are some of the advantages of our proposed method.
Building upon AffectNet, we introduce AffectNet+, the next-generation facial expression dataset.
arXiv Detail & Related papers (2024-10-29T19:57:10Z) - Improved Text Emotion Prediction Using Combined Valence and Arousal Ordinal Classification [37.823815777259036]
We introduce a method for categorizing emotions from text, which acknowledges and differentiates between the diversified similarities and distinctions of various emotions.
Our approach not only preserves high accuracy in emotion prediction but also significantly reduces the magnitude of errors in cases of misclassification.
arXiv Detail & Related papers (2024-04-02T10:06:30Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Implicit Design Choices and Their Impact on Emotion Recognition Model
Development and Evaluation [5.534160116442057]
The subjectivity of emotions poses significant challenges in developing accurate and robust computational models.
This thesis examines critical facets of emotion recognition, beginning with the collection of diverse datasets.
To handle the challenge of non-representative training data, this work collects the Multimodal Stressed Emotion dataset.
arXiv Detail & Related papers (2023-09-06T02:45:42Z) - A cross-corpus study on speech emotion recognition [29.582678406878568]
This study investigates whether information learnt from acted emotions is useful for detecting natural emotions.
Four adult English datasets covering acted, elicited and natural emotions are considered.
A state-of-the-art model is proposed to accurately investigate the degradation of performance.
arXiv Detail & Related papers (2022-07-05T15:15:22Z) - Affect-DML: Context-Aware One-Shot Recognition of Human Affect using
Deep Metric Learning [29.262204241732565]
Existing methods assume that all emotions-of-interest are given a priori as annotated training examples.
We conceptualize one-shot recognition of emotions in context -- a new problem aimed at recognizing human affect states in finer particle level from a single support sample.
All variants of our model clearly outperform the random baseline, while leveraging the semantic scene context consistently improves the learnt representations.
arXiv Detail & Related papers (2021-11-30T10:35:20Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - Emotion-aware Chat Machine: Automatic Emotional Response Generation for
Human-like Emotional Interaction [55.47134146639492]
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
Experiments on real-world data demonstrate that the proposed method outperforms the state-of-the-art methods in terms of both content coherence and emotion appropriateness.
arXiv Detail & Related papers (2021-06-06T06:26:15Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - Modality-Transferable Emotion Embeddings for Low-Resource Multimodal
Emotion Recognition [55.44502358463217]
We propose a modality-transferable model with emotion embeddings to tackle the aforementioned issues.
Our model achieves state-of-the-art performance on most of the emotion categories.
Our model also outperforms existing baselines in the zero-shot and few-shot scenarios for unseen emotions.
arXiv Detail & Related papers (2020-09-21T06:10:39Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
Deep generative models have achieved impressive results in the field of automated facial expression editing.
We propose a model that can be used to manipulate facial expressions in facial images according to continuous two-dimensional emotion labels.
arXiv Detail & Related papers (2020-06-22T13:03:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.