An RL-Based Adaptive Detection Strategy to Secure Cyber-Physical Systems
- URL: http://arxiv.org/abs/2103.02872v1
- Date: Thu, 4 Mar 2021 07:38:50 GMT
- Title: An RL-Based Adaptive Detection Strategy to Secure Cyber-Physical Systems
- Authors: Ipsita Koley, Sunandan Adhikary and Soumyajit Dey
- Abstract summary: Increased dependence on software based control has escalated the vulnerabilities of Cyber Physical Systems.
We propose a Reinforcement Learning (RL) based framework which adaptively sets the parameters of such detectors based on experience learned from attack scenarios.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increased dependence on networked, software based control has escalated the
vulnerabilities of Cyber Physical Systems (CPSs). Detection and monitoring
components developed leveraging dynamical systems theory are often employed as
lightweight security measures for protecting such safety critical CPSs against
false data injection attacks. However, existing approaches do not correlate
attack scenarios with parameters of detection systems. In the present work, we
propose a Reinforcement Learning (RL) based framework which adaptively sets the
parameters of such detectors based on experience learned from attack scenarios,
maximizing detection rate and minimizing false alarms in the process while
attempting performance preserving control actions.
Related papers
- FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Balancing detectability and performance of attacks on the control
channel of Markov Decision Processes [77.66954176188426]
We investigate the problem of designing optimal stealthy poisoning attacks on the control channel of Markov decision processes (MDPs)
This research is motivated by the recent interest of the research community for adversarial and poisoning attacks applied to MDPs, and reinforcement learning (RL) methods.
arXiv Detail & Related papers (2021-09-15T09:13:10Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
We present a Symbolic Reinforcement Learning (SRL) based architecture for safety control of Radio Access Network (RAN) applications.
We provide a purely automated procedure in which a user can specify high-level logical safety specifications for a given cellular network topology.
We introduce a user interface (UI) developed to help a user set intent specifications to the system, and inspect the difference in agent proposed actions.
arXiv Detail & Related papers (2021-06-03T16:45:40Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
In this work, we present an adversarial attack that simultaneously evades the anomaly detectors and rule checkers of a CPS.
Inspired by existing gradient-based approaches, our adversarial attack crafts noise over the sensor and actuator values, then uses a genetic algorithm to optimise the latter.
We implement our approach for two real-world critical infrastructure testbeds, successfully reducing the classification accuracy of their detectors by over 50% on average.
arXiv Detail & Related papers (2021-05-22T12:19:03Z) - Learning-Based Vulnerability Analysis of Cyber-Physical Systems [10.066594071800337]
This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems.
We consider a control architecture widely used in CPS (e.g., robotics) where the low-level control is based on e.g., the extended Kalman filter (EKF) and an anomaly detector.
To facilitate analyzing the impact potential sensing attacks could have, our objective is to develop learning-enabled attack generators.
arXiv Detail & Related papers (2021-03-10T06:52:26Z) - A Secure Learning Control Strategy via Dynamic Camouflaging for Unknown
Dynamical Systems under Attacks [0.0]
This paper presents a secure reinforcement learning (RL) based control method for unknown linear time-invariant cyber-physical systems (CPSs)
We consider the attack scenario where the attacker learns about the dynamic model during the exploration phase of the learning conducted by the designer.
We propose a dynamic camouflaging based attack-resilient reinforcement learning (ARRL) algorithm which can learn the desired optimal controller for the dynamic system.
arXiv Detail & Related papers (2021-02-01T00:34:38Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Robustifying Reinforcement Learning Agents via Action Space Adversarial
Training [23.284452331353894]
Adoption of machine learning (ML)-enabled cyber-physical systems (CPS) are becoming prevalent in various sectors of modern society.
Recent studies in deep reinforcement learning (DRL) have demonstrated its benefits in a large variety of data-driven decisions and control applications.
We show that a well-performing DRL agent that is initially susceptible to action space perturbations can be robustified against similar perturbations through adversarial training.
arXiv Detail & Related papers (2020-07-14T16:50:02Z) - Identifying Vulnerabilities of Industrial Control Systems using
Evolutionary Multiobjective Optimisation [1.8275108630751844]
We identify vulnerabilities in real-world industrial control systems (ICS) using evolutionary multiobjective optimisation (EMO) algorithms.
Our approach is evaluated on a benchmark chemical plant simulator, the Tennessee Eastman (TE) process model.
A defence against these attacks in the form of a novel intrusion detection system was developed.
arXiv Detail & Related papers (2020-05-27T00:22:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.