Calibrated Simplex Mapping Classification
- URL: http://arxiv.org/abs/2103.02926v1
- Date: Thu, 4 Mar 2021 10:18:22 GMT
- Title: Calibrated Simplex Mapping Classification
- Authors: Raoul Heese, Micha{\l} Walczak, Michael Bortz, Jochen Schmid
- Abstract summary: We propose a novel supervised multi-class/single-label classifier that maps training data onto a linearly separable latent space with a simplex-like geometry.
For its solution we can choose suitable distance metrics in feature space and regression models predicting latent space coordinates.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel supervised multi-class/single-label classifier that maps
training data onto a linearly separable latent space with a simplex-like
geometry. This approach allows us to transform the classification problem into
a well-defined regression problem. For its solution we can choose suitable
distance metrics in feature space and regression models predicting latent space
coordinates. A benchmark on various artificial and real-world data sets is used
to demonstrate the calibration qualities and prediction performance of our
classifier.
Related papers
- Disentangled Representation Learning with the Gromov-Monge Gap [65.73194652234848]
Learning disentangled representations from unlabelled data is a fundamental challenge in machine learning.
We introduce a novel approach to disentangled representation learning based on quadratic optimal transport.
We demonstrate the effectiveness of our approach for quantifying disentanglement across four standard benchmarks.
arXiv Detail & Related papers (2024-07-10T16:51:32Z) - Gradient Boosting Mapping for Dimensionality Reduction and Feature Extraction [2.778647101651566]
A fundamental problem in supervised learning is to find a good set of features or distance measures.
We propose a supervised dimensionality reduction method, where the outputs of weak learners define the embedding.
We show that the embedding coordinates provide better features for the supervised learning task.
arXiv Detail & Related papers (2024-05-14T10:23:57Z) - Linear Distance Metric Learning with Noisy Labels [7.326930455001404]
We show that even if the data is noisy, the ground truth linear metric can be learned with any precision.
We present an effective way to truncate the learned model to a low-rank model that can provably maintain the accuracy in loss function and in parameters.
arXiv Detail & Related papers (2023-06-05T18:29:00Z) - Linear Connectivity Reveals Generalization Strategies [54.947772002394736]
Some pairs of finetuned models have large barriers of increasing loss on the linear paths between them.
We find distinct clusters of models which are linearly connected on the test loss surface, but are disconnected from models outside the cluster.
Our work demonstrates how the geometry of the loss surface can guide models towards different functions.
arXiv Detail & Related papers (2022-05-24T23:43:02Z) - Neural Jacobian Fields: Learning Intrinsic Mappings of Arbitrary Meshes [38.157373733083894]
This paper introduces a framework designed to accurately predict piecewise linear mappings of arbitrary meshes via a neural network.
The framework is based on reducing the neural aspect to a prediction of a matrix for a single point, conditioned on a global shape descriptor.
By operating in the intrinsic gradient domain of each individual mesh, it allows the framework to predict highly-accurate mappings.
arXiv Detail & Related papers (2022-05-05T19:51:13Z) - Smoothed Embeddings for Certified Few-Shot Learning [63.68667303948808]
We extend randomized smoothing to few-shot learning models that map inputs to normalized embeddings.
Our results are confirmed by experiments on different datasets.
arXiv Detail & Related papers (2022-02-02T18:19:04Z) - Piecewise linear regression and classification [0.20305676256390928]
This paper proposes a method for solving multivariate regression and classification problems using piecewise linear predictors.
A Python implementation of the algorithm described in this paper is available at http://cse.lab.imtlucca.it/bemporad/parc.
arXiv Detail & Related papers (2021-03-10T17:07:57Z) - Adaptive Graph-based Generalized Regression Model for Unsupervised
Feature Selection [11.214334712819396]
How to select the uncorrelated and discriminative features is the key problem of unsupervised feature selection.
We present a novel generalized regression model imposed by an uncorrelated constraint and the $ell_2,1$-norm regularization.
It can simultaneously select the uncorrelated and discriminative features as well as reduce the variance of these data points belonging to the same neighborhood.
arXiv Detail & Related papers (2020-12-27T09:07:26Z) - Model identification and local linear convergence of coordinate descent [74.87531444344381]
We show that cyclic coordinate descent achieves model identification in finite time for a wide class of functions.
We also prove explicit local linear convergence rates for coordinate descent.
arXiv Detail & Related papers (2020-10-22T16:03:19Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.