Characterizing mid-circuit measurements on a superconducting qubit using
gate set tomography
- URL: http://arxiv.org/abs/2103.03008v1
- Date: Thu, 4 Mar 2021 13:10:53 GMT
- Title: Characterizing mid-circuit measurements on a superconducting qubit using
gate set tomography
- Authors: Kenneth Rudinger, Guilhem J. Ribeill, Luke C. G. Govia, Matthew Ware,
Erik Nielsen, Kevin Young, Thomas A. Ohki, Robin Blume-Kohout, and Timothy
Proctor
- Abstract summary: We show how to characterize mid-circuit measurements modelled by quantum instruments.
We then apply this technique to characterize a dispersive measurement on a superconducting transmon qubit within a multiqubit system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurements that occur within the internal layers of a quantum circuit --
mid-circuit measurements -- are an important quantum computing primitive, most
notably for quantum error correction. Mid-circuit measurements have both
classical and quantum outputs, so they can be subject to error modes that do
not exist for measurements that terminate quantum circuits. Here we show how to
characterize mid-circuit measurements, modelled by quantum instruments, using a
technique that we call quantum instrument linear gate set tomography (QILGST).
We then apply this technique to characterize a dispersive measurement on a
superconducting transmon qubit within a multiqubit system. By varying the delay
time between the measurement pulse and subsequent gates, we explore the impact
of residual cavity photon population on measurement error. QILGST can resolve
different error modes and quantify the total error from a measurement; in our
experiment, for delay times above 1000 ns we measured a total error rate (i.e.,
half diamond distance) of $\epsilon_{\diamond} = 8.1 \pm 1.4 \%$, a readout
fidelity of $97.0 \pm 0.3\%$, and output quantum state fidelities of $96.7 \pm
0.6\%$ and $93.7 \pm 0.7\%$ when measuring $0$ and $1$, respectively.
Related papers
- Readout Error Mitigation for Mid-Circuit Measurements and Feedforward [0.0]
Current-day quantum computing platforms are subject to readout errors.
We present a general method for readout error mitigation for expectation values on circuits with mid-circuit measurements and feedforward.
We demonstrate the effectiveness of our method, obtaining up to a $sim 60%$ reduction in error on superconducting quantum processors.
arXiv Detail & Related papers (2024-06-11T18:00:01Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Model-based Optimization of Superconducting Qubit Readout [59.992881941624965]
We demonstrate model-based readout optimization for superconducting qubits.
We observe 1.5% error per qubit with a 500ns end-to-end duration and minimal excess reset error from residual resonator photons.
This technique can scale to hundreds of qubits and be used to enhance the performance of error-correcting codes and near-term applications.
arXiv Detail & Related papers (2023-08-03T23:30:56Z) - Preserving a qubit during adjacent measurements at a few micrometers
distance [0.7785955518529766]
Current attempts to preserve qubits against resonant laser-driven adjacent measurements waste valuable experimental resources.
We demonstrate high-fidelity preservation of an asset' ion qubit while a neighboring process' qubit is reset or measured at a few microns distance.
arXiv Detail & Related papers (2023-06-05T17:50:36Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Mid-circuit cavity measurement in a neutral atom array [0.0]
We use a strongly coupled optical cavity to read out the state of a single tweezer-trapped 87Rb atom within a small tweezer array.
We find measurement on one atom within the cavity causes no observable hyperfine-state decoherence on a second atom located tens of microns from the cavity volume.
arXiv Detail & Related papers (2022-05-27T17:58:35Z) - Quantum error mitigation via matrix product operators [27.426057220671336]
Quantum error mitigation (QEM) can suppress errors in measurement results via repeated experiments and post decomposition of data.
MPO representation increases the accuracy of modeling noise without consuming more experimental resources.
Our method is hopeful of being applied to circuits in higher dimensions with more qubits and deeper depth.
arXiv Detail & Related papers (2022-01-03T16:57:43Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Quantum tomography of noisy ion-based qudits [0.0]
We show that it is possible to construct a quantum measurement protocol that contains no more than a single quantum operation in each measurement circuit.
The measures described can significantly improve the accuracy of quantum tomography of real ion-based qudits.
arXiv Detail & Related papers (2020-11-09T04:10:32Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.