Perceptual Image Restoration with High-Quality Priori and Degradation
Learning
- URL: http://arxiv.org/abs/2103.03010v1
- Date: Thu, 4 Mar 2021 13:19:50 GMT
- Title: Perceptual Image Restoration with High-Quality Priori and Degradation
Learning
- Authors: Chaoyi Han, Yiping Duan, Xiaoming Tao, Jianhua Lu
- Abstract summary: We show that our model performs well in measuring the similarity between restored and degraded images.
Our simultaneous restoration and enhancement framework generalizes well to real-world complicated degradation types.
- Score: 28.93489249639681
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Perceptual image restoration seeks for high-fidelity images that most likely
degrade to given images. For better visual quality, previous work proposed to
search for solutions within the natural image manifold, by exploiting the
latent space of a generative model. However, the quality of generated images
are only guaranteed when latent embedding lies close to the prior distribution.
In this work, we propose to restrict the feasible region within the prior
manifold. This is accomplished with a non-parametric metric for two
distributions: the Maximum Mean Discrepancy (MMD). Moreover, we model the
degradation process directly as a conditional distribution. We show that our
model performs well in measuring the similarity between restored and degraded
images. Instead of optimizing the long criticized pixel-wise distance over
degraded images, we rely on such model to find visual pleasing images with high
probability. Our simultaneous restoration and enhancement framework generalizes
well to real-world complicated degradation types. The experimental results on
perceptual quality and no-reference image quality assessment (NR-IQA)
demonstrate the superior performance of our method.
Related papers
- Dual-Representation Interaction Driven Image Quality Assessment with Restoration Assistance [11.983231834400698]
No-Reference Image Quality Assessment for distorted images has always been a challenging problem due to image content variance and distortion diversity.
Previous IQA models mostly encode explicit single-quality features of synthetic images to obtain quality-aware representations for quality score prediction.
We introduce the DRI method to obtain degradation vectors and quality vectors of images, which separately model the degradation and quality information of low-quality images.
arXiv Detail & Related papers (2024-11-26T12:48:47Z) - One-step Generative Diffusion for Realistic Extreme Image Rescaling [47.89362819768323]
We propose a novel framework called One-Step Image Rescaling Diffusion (OSIRDiff) for extreme image rescaling.
OSIRDiff performs rescaling operations in the latent space of a pre-trained autoencoder.
It effectively leverages powerful natural image priors learned by a pre-trained text-to-image diffusion model.
arXiv Detail & Related papers (2024-08-17T09:51:42Z) - ARNIQA: Learning Distortion Manifold for Image Quality Assessment [28.773037051085318]
No-Reference Image Quality Assessment (NR-IQA) aims to develop methods to measure image quality in alignment with human perception without the need for a high-quality reference image.
We propose a self-supervised approach named ARNIQA for modeling the image distortion manifold to obtain quality representations in an intrinsic manner.
arXiv Detail & Related papers (2023-10-20T17:22:25Z) - Deep Optimal Transport: A Practical Algorithm for Photo-realistic Image Restoration [31.58365182858562]
We propose an image restoration algorithm that can control the perceptual quality and/or the mean square error (MSE) of any pre-trained model.
Given about a dozen images restored by the model, it can significantly improve the perceptual quality and/or the MSE of the model for newly restored images without further training.
arXiv Detail & Related papers (2023-06-04T12:21:53Z) - High-Perceptual Quality JPEG Decoding via Posterior Sampling [13.238373528922194]
We propose a different paradigm for JPEG artifact correction.
We aim to obtain sharp, detailed and visually reconstructed images, while being consistent with the compressed input.
Our solution offers a diverse set of plausible and fast reconstructions for a given input with perfect consistency.
arXiv Detail & Related papers (2022-11-21T19:47:59Z) - Towards Bidirectional Arbitrary Image Rescaling: Joint Optimization and
Cycle Idempotence [76.93002743194974]
We propose a method to treat arbitrary rescaling, both upscaling and downscaling, as one unified process.
The proposed model is able to learn upscaling and downscaling simultaneously and achieve bidirectional arbitrary image rescaling.
It is shown to be robust in cycle idempotence test, free of severe degradations in reconstruction accuracy when the downscaling-to-upscaling cycle is applied repetitively.
arXiv Detail & Related papers (2022-03-02T07:42:15Z) - Low-Light Image Enhancement with Normalizing Flow [92.52290821418778]
In this paper, we investigate to model this one-to-many relationship via a proposed normalizing flow model.
An invertible network that takes the low-light images/features as the condition and learns to map the distribution of normally exposed images into a Gaussian distribution.
The experimental results on the existing benchmark datasets show our method achieves better quantitative and qualitative results, obtaining better-exposed illumination, less noise and artifact, and richer colors.
arXiv Detail & Related papers (2021-09-13T12:45:08Z) - Learning Conditional Knowledge Distillation for Degraded-Reference Image
Quality Assessment [157.1292674649519]
We propose a practical solution named degraded-reference IQA (DR-IQA)
DR-IQA exploits the inputs of IR models, degraded images, as references.
Our results can even be close to the performance of full-reference settings.
arXiv Detail & Related papers (2021-08-18T02:35:08Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) generates high-resolution, realistic images at resolutions previously unseen in the literature.
Our method outperforms state-of-the-art methods in perceptual quality at higher resolutions and scale factors than previously possible.
arXiv Detail & Related papers (2020-03-08T16:44:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.