A non local phase field model of Bohm's quantum potential
- URL: http://arxiv.org/abs/2103.03162v1
- Date: Thu, 4 Mar 2021 17:07:40 GMT
- Title: A non local phase field model of Bohm's quantum potential
- Authors: Roberto Mauri
- Abstract summary: Bohm's quantum potential and the Madelung equation are identically obtained.
Some of the hypotheses that led to the formulation of quantum mechanics admit a classical interpretation based on non-locality.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Assuming that the free energy of a gas depends non-locally on the logarithm
of its mass density, the body force in the resulting equation of motion
consists of the sum of density gradient terms. Truncating this series after the
second term, Bohm's quantum potential and the Madelung equation are identically
obtained, showing explicitly that some of the hypotheses that led to the
formulation of quantum mechanics admit a classical interpretation based on
non-locality.
Related papers
- Restrictions imposed by a pure quantum state on the results of measuring the momentum of a particle [0.0]
It is shown that quantum mechanics, including the Born rule for calculating the expectation values of observables for a particle in a given pure state, imposes statistical restrictions on the results of measuring observables.
However, these restrictions are not as strong as follows from Bohm mechanics.
The key role here is played by the fact that one of the contributions to the Bohm potential' is actually a contribution to the field characterizing the kinetic energy of the particle.
arXiv Detail & Related papers (2024-07-05T14:24:33Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - Quantum mechanics without quantum potentials [0.0]
Non-locality in quantum mechanics can be resolved by considering relativistically covariant diffusion in spacetime.
We introduce the concept of momentum equilinear to replace the second-order Bohm-Newton equations of motion.
arXiv Detail & Related papers (2024-01-08T18:51:38Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - A covariant non-local phase field model of Bohm's potential [0.0]
Bohm's quantum potential and the Madelung equations are obtained, showing explicitly that some of the hypotheses that led to the formulationb of quantum mechanics do admit a classical interpretation based on non-locality.
arXiv Detail & Related papers (2022-02-03T11:30:54Z) - Induced osmotic vorticity in the quantum hydrodynamical picture [0.0]
Solution entails attenuation related effects as non-unitary evolution, non-exponential quantum decay and entropy production.
Time-invariant equation for the probability density is derived, analogous to the tensor Lighthill equation in aeroacoustics.
arXiv Detail & Related papers (2021-06-24T17:58:51Z) - Resonant particle creation by a time-dependent potential in a nonlocal
theory [0.0]
We consider an exactly solvable local quantum theory of a scalar field interacting with a $delta$-shaped time-dependent potential.
We show how these considerations, when suitably generalized to a specific nonlocal "infinite-derivative" quantum theory, are impacted by the presence of nonlocality.
arXiv Detail & Related papers (2020-11-25T18:24:30Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.