Perceiver: General Perception with Iterative Attention
- URL: http://arxiv.org/abs/2103.03206v1
- Date: Thu, 4 Mar 2021 18:20:50 GMT
- Title: Perceiver: General Perception with Iterative Attention
- Authors: Andrew Jaegle and Felix Gimeno and Andrew Brock and Andrew Zisserman
and Oriol Vinyals and Joao Carreira
- Abstract summary: We introduce the Perceiver - a model that builds upon Transformers.
We show that this architecture performs competitively or beyond strong, specialized models on classification tasks.
It also surpasses state-of-the-art results for all modalities in AudioSet.
- Score: 85.65927856589613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Biological systems understand the world by simultaneously processing
high-dimensional inputs from modalities as diverse as vision, audition, touch,
proprioception, etc. The perception models used in deep learning on the other
hand are designed for individual modalities, often relying on domain-specific
assumptions such as the local grid structures exploited by virtually all
existing vision models. These priors introduce helpful inductive biases, but
also lock models to individual modalities. In this paper we introduce the
Perceiver - a model that builds upon Transformers and hence makes few
architectural assumptions about the relationship between its inputs, but that
also scales to hundreds of thousands of inputs, like ConvNets. The model
leverages an asymmetric attention mechanism to iteratively distill inputs into
a tight latent bottleneck, allowing it to scale to handle very large inputs. We
show that this architecture performs competitively or beyond strong,
specialized models on classification tasks across various modalities: images,
point clouds, audio, video and video+audio. The Perceiver obtains performance
comparable to ResNet-50 on ImageNet without convolutions and by directly
attending to 50,000 pixels. It also surpasses state-of-the-art results for all
modalities in AudioSet.
Related papers
- Probing Fine-Grained Action Understanding and Cross-View Generalization of Foundation Models [13.972809192907931]
Foundation models (FMs) are large neural networks trained on broad datasets.
Human activity recognition in video has advanced with FMs, driven by competition among different architectures.
This paper empirically evaluates how perspective changes affect different FMs in fine-grained human activity recognition.
arXiv Detail & Related papers (2024-07-22T12:59:57Z) - SUM: Saliency Unification through Mamba for Visual Attention Modeling [5.274826387442202]
Visual attention modeling plays a significant role in applications such as marketing, multimedia, and robotics.
Traditional saliency prediction models, especially those based on CNNs or Transformers, achieve notable success by leveraging large-scale annotated datasets.
In this paper, we propose Saliency Unification through Mamba (SUM), a novel approach that integrates the efficient long-range dependency modeling of Mamba with U-Net.
arXiv Detail & Related papers (2024-06-25T05:54:07Z) - Towards a Generalist and Blind RGB-X Tracker [91.36268768952755]
We develop a single model tracker that can remain blind to any modality X during inference time.
Our training process is extremely simple, integrating multi-label classification loss with a routing function.
Our generalist and blind tracker can achieve competitive performance compared to well-established modal-specific models.
arXiv Detail & Related papers (2024-05-28T03:00:58Z) - Multimodal Distillation for Egocentric Action Recognition [41.821485757189656]
egocentric video understanding involves modelling hand-object interactions.
Standard models, e.g. CNNs or Vision Transformers, which receive RGB frames as input perform well.
But their performance improves further by employing additional input modalities that provide complementary cues.
The goal of this work is to retain the performance of such a multimodal approach, while using only the RGB frames as input at inference time.
arXiv Detail & Related papers (2023-07-14T17:07:32Z) - Zorro: the masked multimodal transformer [68.99684436029884]
Zorro is a technique that uses masks to control how inputs from each modality are routed inside Transformers.
We show that with contrastive pre-training Zorro achieves state-of-the-art results on most relevant benchmarks for multimodal tasks.
arXiv Detail & Related papers (2023-01-23T17:51:39Z) - Revisiting Classifier: Transferring Vision-Language Models for Video
Recognition [102.93524173258487]
Transferring knowledge from task-agnostic pre-trained deep models for downstream tasks is an important topic in computer vision research.
In this study, we focus on transferring knowledge for video classification tasks.
We utilize the well-pretrained language model to generate good semantic target for efficient transferring learning.
arXiv Detail & Related papers (2022-07-04T10:00:47Z) - Attention Bottlenecks for Multimodal Fusion [90.75885715478054]
Machine perception models are typically modality-specific and optimised for unimodal benchmarks.
We introduce a novel transformer based architecture that uses fusion' for modality fusion at multiple layers.
We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks.
arXiv Detail & Related papers (2021-06-30T22:44:12Z) - Polynomial Networks in Deep Classifiers [55.90321402256631]
We cast the study of deep neural networks under a unifying framework.
Our framework provides insights on the inductive biases of each model.
The efficacy of the proposed models is evaluated on standard image and audio classification benchmarks.
arXiv Detail & Related papers (2021-04-16T06:41:20Z) - Contextual Encoder-Decoder Network for Visual Saliency Prediction [42.047816176307066]
We propose an approach based on a convolutional neural network pre-trained on a large-scale image classification task.
We combine the resulting representations with global scene information for accurately predicting visual saliency.
Compared to state of the art approaches, the network is based on a lightweight image classification backbone.
arXiv Detail & Related papers (2019-02-18T16:15:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.