Unified Robust Training for Graph NeuralNetworks against Label Noise
- URL: http://arxiv.org/abs/2103.03414v1
- Date: Fri, 5 Mar 2021 01:17:04 GMT
- Title: Unified Robust Training for Graph NeuralNetworks against Label Noise
- Authors: Yayong Li, Jie yin, Ling Chen
- Abstract summary: We propose a new framework, UnionNET, for learning with noisy labels on graphs under a semi-supervised setting.
Our approach provides a unified solution for robustly training GNNs and performing label correction simultaneously.
- Score: 12.014301020294154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs) have achieved state-of-the-art performance for
node classification on graphs. The vast majority of existing works assume that
genuine node labels are always provided for training. However, there has been
very little research effort on how to improve the robustness of GNNs in the
presence of label noise. Learning with label noise has been primarily studied
in the context of image classification, but these techniques cannot be directly
applied to graph-structured data, due to two major challenges -- label sparsity
and label dependency -- faced by learning on graphs. In this paper, we propose
a new framework, UnionNET, for learning with noisy labels on graphs under a
semi-supervised setting. Our approach provides a unified solution for robustly
training GNNs and performing label correction simultaneously. The key idea is
to perform label aggregation to estimate node-level class probability
distributions, which are used to guide sample reweighting and label correction.
Compared with existing works, UnionNET has two appealing advantages. First, it
requires no extra clean supervision, or explicit estimation of the noise
transition matrix. Second, a unified learning framework is proposed to robustly
train GNNs in an end-to-end manner. Experimental results show that our proposed
approach: (1) is effective in improving model robustness against different
types and levels of label noise; (2) yields significant improvements over
state-of-the-art baselines.
Related papers
- ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
We propose a method called ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) to learn representations with error tolerance.
ERASE combines prototype pseudo-labels with propagated denoised labels and updates representations with error resilience.
Our method can outperform multiple baselines with clear margins in broad noise levels and enjoy great scalability.
arXiv Detail & Related papers (2023-12-13T17:59:07Z) - Learning on Graphs under Label Noise [5.909452203428086]
We develop a novel approach dubbed Consistent Graph Neural Network (CGNN) to solve the problem of learning on graphs with label noise.
Specifically, we employ graph contrastive learning as a regularization term, which promotes two views of augmented nodes to have consistent representations.
To detect noisy labels on the graph, we present a sample selection technique based on the homophily assumption.
arXiv Detail & Related papers (2023-06-14T01:38:01Z) - Robust Training of Graph Neural Networks via Noise Governance [27.767913371777247]
Graph Neural Networks (GNNs) have become widely-used models for semi-supervised learning.
In this paper, we consider an important yet challenging scenario where labels on nodes of graphs are not only noisy but also scarce.
We propose a novel RTGNN framework that achieves better robustness by learning to explicitly govern label noise.
arXiv Detail & Related papers (2022-11-12T09:25:32Z) - Label-Enhanced Graph Neural Network for Semi-supervised Node
Classification [32.64730237473914]
We present a label-enhanced learning framework for Graph Neural Networks (GNNs)
It first models each label as a virtual center for intra-class nodes and then jointly learns the representations of both nodes and labels.
Our approach could not only smooth the representations of nodes belonging to the same class, but also explicitly encode the label semantics into the learning process of GNNs.
arXiv Detail & Related papers (2022-05-31T09:48:47Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - Informative Pseudo-Labeling for Graph Neural Networks with Few Labels [12.83841767562179]
Graph Neural Networks (GNNs) have achieved state-of-the-art results for semi-supervised node classification on graphs.
The challenge of how to effectively learn GNNs with very few labels is still under-explored.
We propose a novel informative pseudo-labeling framework, called InfoGNN, to facilitate learning of GNNs with extremely few labels.
arXiv Detail & Related papers (2022-01-20T01:49:30Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGM is a framework to boost the performance of Graph Neural Networks (GNNs) based graph matching without training.
Applying TFGM on various GNNs shows promising improvements over baselines.
arXiv Detail & Related papers (2022-01-14T09:04:46Z) - Noise-robust Graph Learning by Estimating and Leveraging Pairwise
Interactions [123.07967420310796]
This paper bridges the gap by proposing a pairwise framework for noisy node classification on graphs.
PI-GNN relies on the PI as a primary learning proxy in addition to the pointwise learning from the noisy node class labels.
Our proposed framework PI-GNN contributes two novel components: (1) a confidence-aware PI estimation model that adaptively estimates the PI labels, and (2) a decoupled training approach that leverages the estimated PI labels.
arXiv Detail & Related papers (2021-06-14T14:23:08Z) - NRGNN: Learning a Label Noise-Resistant Graph Neural Network on Sparsely
and Noisily Labeled Graphs [20.470934944907608]
Graph Neural Networks (GNNs) have achieved promising results for semi-supervised learning tasks on graphs such as node classification.
Many real-world graphs are often sparsely and noisily labeled, which could significantly degrade the performance of GNNs.
We propose to develop a label noise-resistant GNN for semi-supervised node classification.
arXiv Detail & Related papers (2021-06-08T22:12:44Z) - On the Equivalence of Decoupled Graph Convolution Network and Label
Propagation [60.34028546202372]
Some work shows that coupling is inferior to decoupling, which supports deep graph propagation better.
Despite effectiveness, the working mechanisms of the decoupled GCN are not well understood.
We propose a new label propagation method named propagation then training Adaptively (PTA), which overcomes the flaws of the decoupled GCN.
arXiv Detail & Related papers (2020-10-23T13:57:39Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
We propose a novel pool-based Active Learning framework constructed on a sequential Graph Convolution Network (GCN)
With a small number of randomly sampled images as seed labelled examples, we learn the parameters of the graph to distinguish labelled vs unlabelled nodes.
We exploit these characteristics of GCN to select the unlabelled examples which are sufficiently different from labelled ones.
arXiv Detail & Related papers (2020-06-18T00:55:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.