Passing Through Narrow Gaps with Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2103.03991v1
- Date: Sat, 6 Mar 2021 00:10:41 GMT
- Title: Passing Through Narrow Gaps with Deep Reinforcement Learning
- Authors: Brendan Tidd, Akansel Cosgun, Jurgen Leitner, and Nicolas Hudson
- Abstract summary: In this paper we present a deep reinforcement learning method for autonomously navigating through small gaps.
We first learn a gap behaviour policy to get through small gaps, where contact between the robot and the gap may be required.
In simulation experiments, our approach achieves 93% success rate when the gap behaviour is activated manually by an operator.
In real robot experiments, our approach achieves a success rate of 73% with manual activation, and 40% with autonomous behaviour selection.
- Score: 2.299414848492227
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The DARPA subterranean challenge requires teams of robots to traverse
difficult and diverse underground environments. Traversing small gaps is one of
the challenging scenarios that robots encounter. Imperfect sensor information
makes it difficult for classical navigation methods, where behaviours require
significant manual fine tuning. In this paper we present a deep reinforcement
learning method for autonomously navigating through small gaps, where contact
between the robot and the gap may be required. We first learn a gap behaviour
policy to get through small gaps (only centimeters wider than the robot). We
then learn a goal-conditioned behaviour selection policy that determines when
to activate the gap behaviour policy. We train our policies in simulation and
demonstrate their effectiveness with a large tracked robot in simulation and on
the real platform. In simulation experiments, our approach achieves 93% success
rate when the gap behaviour is activated manually by an operator, and 67% with
autonomous activation using the behaviour selection policy. In real robot
experiments, our approach achieves a success rate of 73% with manual
activation, and 40% with autonomous behaviour selection. While we show the
feasibility of our approach in simulation, the difference in performance
between simulated and real world scenarios highlight the difficulty of direct
sim-to-real transfer for deep reinforcement learning policies. In both the
simulated and real world environments alternative methods were unable to
traverse the gap.
Related papers
- Dynamics as Prompts: In-Context Learning for Sim-to-Real System Identifications [23.94013806312391]
We propose a novel approach that dynamically adjusts simulation environment parameters online using in-context learning.
We validate our approach across two tasks: object scooping and table air hockey.
Our approach delivers efficient and smooth system identification, advancing the deployment of robots in dynamic real-world scenarios.
arXiv Detail & Related papers (2024-10-27T07:13:38Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
Imitation learning is a powerful machine learning algorithm for a robot to acquire manipulation skills.
We propose GSR, a simple yet effective algorithm that learns from suboptimal demonstrations through Graph Search and Retrieval.
GSR can achieve a 10% to 30% higher success rate and over 30% higher proficiency compared to baselines.
arXiv Detail & Related papers (2024-07-22T06:12:21Z) - Nonprehensile Planar Manipulation through Reinforcement Learning with
Multimodal Categorical Exploration [8.343657309038285]
Reinforcement Learning is a powerful framework for developing such robot controllers.
We propose a multimodal exploration approach through categorical distributions, which enables us to train planar pushing RL policies.
We show that the learned policies are robust to external disturbances and observation noise, and scale to tasks with multiple pushers.
arXiv Detail & Related papers (2023-08-04T16:55:00Z) - Robust Visual Sim-to-Real Transfer for Robotic Manipulation [79.66851068682779]
Learning visuomotor policies in simulation is much safer and cheaper than in the real world.
However, due to discrepancies between the simulated and real data, simulator-trained policies often fail when transferred to real robots.
One common approach to bridge the visual sim-to-real domain gap is domain randomization (DR)
arXiv Detail & Related papers (2023-07-28T05:47:24Z) - Learning Bipedal Walking for Humanoids with Current Feedback [5.429166905724048]
We present an approach for overcoming the sim2real gap issue for humanoid robots arising from inaccurate torque-tracking at the actuator level.
Our approach successfully trains a unified, end-to-end policy in simulation that can be deployed on a real HRP-5P humanoid robot to achieve bipedal locomotion.
arXiv Detail & Related papers (2023-03-07T08:16:46Z) - Navigating to Objects in the Real World [76.1517654037993]
We present a large-scale empirical study of semantic visual navigation methods comparing methods from classical, modular, and end-to-end learning approaches.
We find that modular learning works well in the real world, attaining a 90% success rate.
In contrast, end-to-end learning does not, dropping from 77% simulation to 23% real-world success rate due to a large image domain gap between simulation and reality.
arXiv Detail & Related papers (2022-12-02T01:10:47Z) - Obstacle Avoidance for Robotic Manipulator in Joint Space via Improved
Proximal Policy Optimization [6.067589886362815]
In this paper, we train a deep neural network via an improved Proximal Policy Optimization (PPO) algorithm to map from task space to joint space for a 6-DoF manipulator.
Since training such a task in real-robot is time-consuming and strenuous, we develop a simulation environment to train the model.
Experimental results showed that using our method, the robot was capable of tracking a single target or reaching multiple targets in unstructured environments.
arXiv Detail & Related papers (2022-10-03T10:21:57Z) - A Walk in the Park: Learning to Walk in 20 Minutes With Model-Free
Reinforcement Learning [86.06110576808824]
Deep reinforcement learning is a promising approach to learning policies in uncontrolled environments.
Recent advancements in machine learning algorithms and libraries combined with a carefully tuned robot controller lead to learning quadruped in only 20 minutes in the real world.
arXiv Detail & Related papers (2022-08-16T17:37:36Z) - Bayesian Meta-Learning for Few-Shot Policy Adaptation Across Robotic
Platforms [60.59764170868101]
Reinforcement learning methods can achieve significant performance but require a large amount of training data collected on the same robotic platform.
We formulate it as a few-shot meta-learning problem where the goal is to find a model that captures the common structure shared across different robotic platforms.
We experimentally evaluate our framework on a simulated reaching and a real-robot picking task using 400 simulated robots.
arXiv Detail & Related papers (2021-03-05T14:16:20Z) - Reactive Long Horizon Task Execution via Visual Skill and Precondition
Models [59.76233967614774]
We describe an approach for sim-to-real training that can accomplish unseen robotic tasks using models learned in simulation to ground components of a simple task planner.
We show an increase in success rate from 91.6% to 98% in simulation and from 10% to 80% success rate in the real-world as compared with naive baselines.
arXiv Detail & Related papers (2020-11-17T15:24:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.