Smart Speakers, the Next Frontier in Computational Health
- URL: http://arxiv.org/abs/2103.04209v1
- Date: Sat, 6 Mar 2021 23:13:02 GMT
- Title: Smart Speakers, the Next Frontier in Computational Health
- Authors: Jacob Sunshine
- Abstract summary: Smart speaker computing systems carry several unique advantages that have the potential to catalyze new fields of health research.
The recent rise and ubiquity of these smart computing systems hold significant potential for enhancing chronic disease management.
There are 3 broad mechanisms for how a smart speaker can interact with a person to improve health.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid dissemination and adoption of smart speakers has enabled
substantial opportunities to improve human health. Just as the introduction of
the mobile phone led to considerable health innovation, smart speaker computing
systems carry several unique advantages that have the potential to catalyze new
fields of health research, particularly in out-of-hospital environments. The
recent rise and ubiquity of these smart computing systems hold significant
potential for enhancing chronic disease management, enabling passive
identification of unwitnessed medical emergencies, detecting subtle changes in
human behavior and cognition, limiting isolation, and potentially allowing
widespread, passive, remote monitoring of respiratory diseases that impact the
public health. There are 3 broad mechanisms for how a smart speaker can
interact with a person to improve health. These include (i) as an intelligent
conversational agent, (ii) a passive identifier of medically relevant
diagnostic sounds and (iii) active sensing using the device's internal hardware
to measure physiologic parameters, such as with active sonar, radar or computer
vision. Each of these different modalities have specific clinical use cases,
all of which need to be balanced against potential privacy concerns, equity
related to system access and regulatory frameworks which have not yet been
developed for this unique type of passive data collection.
Related papers
- The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems [2.8351008282227266]
Mobile health has the potential to revolutionize health care delivery and patient engagement.
We present an Artificial Intelligence and Reinforcement Learning platform that allows the delivery of adaptive interventions.
The flexibility of this platform to connect to various mobile health applications and digital devices and send personalized recommendations can significantly improve the impact of digital tools on health system outcomes.
arXiv Detail & Related papers (2024-09-24T13:52:15Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
We focus on predicting engagement in dyadic interactions by scrutinizing verbal and non-verbal cues, aiming to detect signs of disinterest or confusion.
In this work, we collect a dataset featuring 34 participants engaged in casual dyadic conversations, each providing self-reported engagement ratings at the end of each conversation.
We introduce a novel fusion strategy using Large Language Models (LLMs) to integrate multiple behavior modalities into a multimodal transcript''
arXiv Detail & Related papers (2024-09-13T18:28:12Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - A Health Monitoring System Based on Flexible Triboelectric Sensors for
Intelligence Medical Internet of Things and its Applications in Virtual
Reality [4.522609963399036]
The Internet of Medical Things (IoMT) is a platform that combines Internet of Things (IoT) technology with medical applications.
In this study, we designed a robust and intelligent IoMT system through the synergistic integration of flexible wearable triboelectric sensors and deep learning-assisted data analytics.
We embedded four triboelectric sensors into a wristband to detect and analyze limb movements in patients suffering from Parkinson's Disease (PD)
This innovative approach enabled us to accurately capture and scrutinize the subtle movements and fine motor of PD patients, thus providing insightful feedback and comprehensive assessment of the patients conditions.
arXiv Detail & Related papers (2023-09-13T01:01:16Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
Recent years have seen a rapid increase in digital medicine research in an attempt to transform traditional healthcare systems.
Computer audition can be seen to be lagging behind, at least in terms of commercial interest.
We categorise the advances needed in four key pillars: Hear, corresponding to the cornerstone technologies needed to analyse auditory signals in real-life conditions; Earlier, for the advances needed in computational and data efficiency; Attentively, for accounting to individual differences and handling the longitudinal nature of medical data.
arXiv Detail & Related papers (2023-01-25T09:25:08Z) - Bias Impact Analysis of AI in Consumer Mobile Health Technologies:
Legal, Technical, and Policy [1.6114012813668934]
This work examines the intersection of algorithmic bias in consumer mobile health technologies (mHealth)
We explore what extent current mechanisms - legal, technical, and or normative - help mitigate potential risks associated with unwanted bias.
We provide additional guidance on the role and responsibilities technologists and policymakers have to ensure that such systems empower patients equitably.
arXiv Detail & Related papers (2022-08-29T00:15:45Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
We have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD)
This study provided the largest PD sample size of two-hand synchronous smartwatch measurements.
arXiv Detail & Related papers (2022-05-11T09:12:59Z) - Building a Decision Support System for Automated Mobile Asthma
Monitoring in Remote Areas [0.0]
This paper proposes the use of smartphone equipped with embedded sensors, to capture and analyze early symptoms of asthma triggered by exercise.
Preliminary results show that smartphones can be used to monitor and detect asthma symptoms without other networked devices.
arXiv Detail & Related papers (2021-12-11T14:18:08Z) - Smart Healthcare in the Age of AI: Recent Advances, Challenges, and
Future Prospects [3.3336265497547126]
The smart healthcare system is a topic of recently growing interest and has become increasingly required due to major developments in modern technologies.
This paper is aimed to discuss the current state-of-the-art smart healthcare systems highlighting major areas like wearable and smartphone devices for health monitoring, machine learning for disease diagnosis, and the assistive frameworks, including social robots developed for the ambient assisted living environment.
arXiv Detail & Related papers (2021-06-24T05:10:47Z) - Digital Ariadne: Citizen Empowerment for Epidemic Control [55.41644538483948]
The COVID-19 crisis represents the most dangerous threat to public health since the H1N1 pandemic of 1918.
Technology-assisted location and contact tracing, if broadly adopted, may help limit the spread of infectious diseases.
We present a tool, called 'diAry' or 'digital Ariadne', based on voluntary location and Bluetooth tracking on personal devices.
arXiv Detail & Related papers (2020-04-16T15:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.